

Wokingham Borough Council

WOKINGHAM STRATEGIC TRANSPORT MODEL 4 (WSTM4)

Local Model Validation Report

Wokingham Borough Council

WOKINGHAM STRATEGIC TRANSPORT MODEL 4 (WSTM4)

Local Model Validation Report

TYPE OF DOCUMENT (VERSION) PUBLIC

PROJECT NO. 70014995 OUR REF. NO. 70014995

DATE: MAY 2018

WSP Mountbatten House Basing View Basingstoke, Hampshire RG21 4HJ Phone: +44 1256 318 800 Fax: +44 1256 318 700 WSP.com

۱۱SD

QUALITY CONTROL

ISSUE/REVISION	FIRST ISSUE	REVISION 1	REVISION 2	REVISION 3
Remarks	Revision to the March 2017 LMVR, VISUM 17 Revalidation			
Date	30 May 2018			
Prepared by	Diana Murungi, Lucy Burton-Brown,			
Signature	Burton-Brown, Lucy 2018.05.30 15:40:50 +01'00'			
Checked by	Diana Murungi			
Signature	Murungi, Diana Diana 13:13:14 +01'00'			
Authorised by	Nadia Lyubimova			
Signature	Lyubimova, Nadia 2018.05.31 12:02:12 +01'00'			
Project number	70014995			
Report number	002			
File reference				

CONTENTS

vsp

1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	PROPOSED USES OF THE MODEL	2
1.3	GUIDANCE	2
1.4	REPORT PURPOSE AND STRUCTURE	2
2	KEY FEATURES OF WSTM4	4
2.1	MODELLED AREA	4
2.2	ZONING SYSTEM	4
2.3	WSTM4 SECTORING SYSTEM	4
2.4	MODEL YEARS	9
2.5	TIME PERIODS	9
2.6	MODEL STRUCTURE AND DEMAND SEGMENTATION	9
2.7	SOFTWARE PLATFORM	9
3	HIGHWAY NETWORK DEVELOPMENT	10
3.1	NETWORK DATA, CODING AND CHECKING	10
3.2	JUNCTIONS: FLOW/DELAY RELATIONSHIPS, SIGNAL TIMINGS, SATURATION FLOWS	10
3.3	LINKS: SPEED/FLOW RELATIONSHIPS, FIXED SPEEDS	11
3.4	ASSIGNMENT METHODOLOGY	12
3.5	GENERALISED COST FORMULATIONS AND PARAMETER VALUES	15
4	TRIP MATRIX DEVELOPMENT	17
4.1	INTRODUCTION	17
4.2	OVERVIEW OF THE METHODOLOGY	17
4.3	STAGE 1. INITIAL PROCESSING OF MND	18
4.4	STAGE 2 - MND VERIFICATION	19
4.5	STAGE 3. PRIOR MATRIX DEVELOPMENT TO THE WSTM4 MODEL SPECIFICATI	ON20

4.6	AGGREGATION OF MND RAW MATRICES	21
4.7	DISAGGREGATION OF DEMAND FROM WSTM4 MND SECTORS TO WS	TM4 ZONES21
4.8	REFINEMENT OF THE DISTRIBUTION OF EXTERNAL TRIP ENDS	22
4.9	CREATION OF HOURLY MATRICES	22
4.10	LGV AND HGV TRIPS	22
	Split the Demand by Purpose and Mode	23
5	HIGHWAY MODEL CALIBRATION AND VALIDATION	27
5.1	INTRODUCTION	27
5.2	APPROACH OVERVIEW	27
	Data	27
	Network Calibration	30
	Network Validation	30
	Route Choice Calibration	30
	Route Choice Validation	31
	Trip Matrix Calibration	31
	Trip Matrix Validation	31
	Assignment calibration	32
	Assignment Validation	32
5.3	SUMMARY OF CALIBRATION AND VALIDATION CRITERIA	32
5.4	PRIOR MATRIX PERFORMANCE	33
5.5	FINAL MODEL PERFORMANCE	36
	Count Calibration	36
	Count Validation	39
	Screenline and Cordon Performance	43
	Journey Times	44
	Junction Validation	47
	Route Validation	48
	Model Convergence	49
5.6	IMPACT OF MATRIX ESTIMATION	49
	Regression Statistics at Trip End Level	49
	Trip Length Distribution	50
6	CONCLUSIONS	59

۱۱SD

TABLES

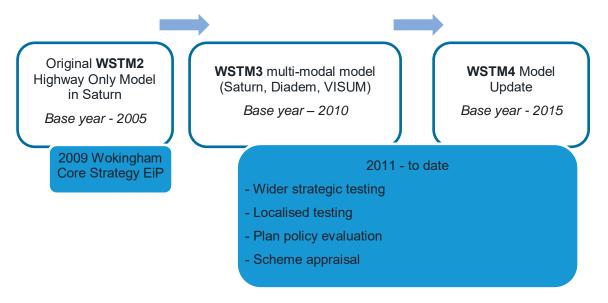
Table 1 – Roundabout Saturation Flows	11
Table 2 – WSTM4 Link Types	11
Table 3 - Generalised Cost Parameters	16
Table 4 – External factors to mode and purpose split	24
Table 5 – Acceptable Criteria	33
Table 6 - WSTM4 AM peak Prior Matrix Performance Link Statistics	33
Table 7 - WSTM4 Inter peak Prior Matrix Performance Link Statistics	34
Table 8 - WSTM4 PM peak Prior Matrix Performance Link Statistics	35
Table 9 - WSTM4 AM peak Calibration Final Performance Link Statistics	37
Table 10 - WSTM4 Inter peak Calibration Final Performance Link Statistics	38
Table 11 - WSTM4 PM peak Calibration Final Performance Link Statistics	39
Table 12 - WSTM4 AM peak Validation Final Performance Link Statistics	40
Table 13 - WSTM4 Inter peak Validation Final Performance Link Statistics	41
Table 14 - WSTM4 PM peak Validation Final Performance Link Statistics	42
Table 15 - WSTM4 AM Peak Screenline and Cordon Performance Summary	43
Table 16 - WSTM4 Inter Peak Screenline and Cordon Performance Summary	43
Table 17 – WSTM4 PM Peak Screenline and Cordon Performance Summary	44
Table 18 - WSTM4 Journey Time Performance	44
Table 19 - AM Peak Journey Time Performance	45
Table 20 - Inter Peak Journey Time Performance	46
Table 21 - PM Peak Journey Time Performance	47
Table 22 – Junction validation summary statistics	48
Table 23 – TAG Convergence Criteria	49
Table 24 – WSTM4 Convergence Results	49
Table 25 – AM peak Pre and Post Matrix Estimation Statistics	50
Table 26 – Inter peak Pre and Post Matrix Estimation Statistics	50
Table 27 – PM peak Pre and Post Matrix Estimation Statistics	50
Table 28 - WSTM4 Trip Mean Values – AM Peak	58
Table 29 - WSTM4 Trip Mean Values – Inter Peak	58
Table 30 - WSTM4 Trip Mean Values –PM Peak	58

FIGURES

Figure 1 – WSTM Development Chronology	1
Figure 2 – WSTM4 Fully Modelled Area	5
Figure 3 – WSTM4 Zoning – Fully Modelled Area	6
Figure 4 – WSTM4 Zoning System: Wokingham, Reading and Bracknell Forest Boroughs	6
Figure 5 – WSTM4 Sectors (1)	7
Figure 6 – WSTM4 Sectors (2)	8
Figure 7 – Assignment with ICA – Equilibrium Assignment Procedure Parameters Input	12
Figure 8 – Assignment with ICA – Equilibrium Assignment Procedure Parameters Procedure sequence	13
Figure 9 – Assignment with ICA – Equilibrium Assignment Parameters	13
Figure 10 – Assignment with ICA – Equilibrium Bi-conjugate Frank-Wolfe Procedure Parameters Input	14
Figure 11 – Assignment with ICA – Equilibrium Bi-conjugate Frank-Wolfe Procedure Parameters Procedure Sequence	15
Figure 12 – Assignment with ICA – Equilibrium Bi-conjugate Frank-Wolfe Parameters	15
Figure 13 – Approach Overview	18
Figure 14 – MND Verification Process	20
Figure 15 - MND Matrices to WSTM4 Matrices Process Overview	21
Figure 16 – Gravity model to split matrices by purpose and mode	23
Figure 17 - Outline of how the gravity model is used for mode and purpose split	24
Figure 18 – Gravity model in VISUM	25
Figure 19 – Example of a trip length distribution calibration diagram	26
Figure 20 – Survey Locations (1)	28
Figure 21 – Survey Locations (2)	28
Figure 22 – Journey Time Routes (1)	29
Figure 23 – Journey Time Routes (2)	30
Figure 24 – Highway Model Screenlines	32
Figure 25 – WSTM4 AM peak Prior Matrix Performance	34
Figure 26 - WSTM4 Inter peak Prior Matrix Performance	35
Figure 27 - WSTM4 PM peak Prior Matrix Performance	36
Figure 28 - WSTM4 AM peak Calibration Final Performance	37
Figure 29 - WSTM4 Inter peak Calibration Final Performance	38

Figure 30 - WSTM4 PM peak Calibration Final Performance	39
Figure 31 - WSTM4 AM peak Validation Final Performance	41
Figure 32 - WSTM4 Inter peak Validation Final Performance	42
Figure 33 - WSTM4 PM Peak Validation Final Performance	43
Figure 34 - WSTM4 Location of junctions	48
Figure 35 - AM Peak Trip Length Distribution Car Commuting	50
Figure 36 - AM Peak Trip Length Distribution Car Business	51
Figure 37 - AM Peak Trip Length Distribution Car Other	51
Figure 38 - AM Peak Trip Length Distribution LGV	52
Figure 39 - AM Peak Trip Length Distribution HGV	52
Figure 40 - Inter Peak Trip Length Distribution Car Commuting	53
Figure 41 - Inter Peak Trip Length Distribution Car Business	53
Figure 42 - Inter Peak Trip Length Distribution Car Other	54
Figure 43 - Inter Peak Trip Length Distribution LGV	54
Figure 44 - Inter Peak Trip Length Distribution HGV	55
Figure 45 - PM Peak Trip Length Distribution Car Commuting	55
Figure 46 - PM Peak Trip Length Distribution Car Business	56
Figure 47 - PM Peak Trip Length Distribution Car Other	56
Figure 48 - PM Peak Trip Length Distribution LGV	57
Figure 49 - PM Peak Trip Length Distribution HGV	57

APPENDICES


- Appendix A
- Appendix A.1
- Appendix A.2
- Appendix B
- Appendix B.1
- Appendix B.2
- Appendix B.3
- Appendix B.4
- Appendix B.5
- Appendix B.6

1 INTRODUCTION

1.1 BACKGROUND

- 1.1.1. In 2008 WSP was appointed as the Highways and Transport Term consultant for Wokingham Borough Council (WBC). This included the use and on-going maintenance of the Wokingham Strategic Transport Model (WSTM) and its use to support transport policies and scheme development. Since this appointment WSP have completed two model updates and in Autumn 2015 was commissioned to progress a third:
 - WSTM2 update of forecast scenarios to include details of Strategic Development Locations (SDLs) and mitigation measures
 - WSTM3 Update to a 2010 model base year from 2005, compliance with DfT Transport Analysis Guidance, integration of a Public Transport model in VISUM and a Variable Demand Model (VDM) developed using DIADEM
 - WSTM4 Commissioned in 2015 to update the model base year to 2015 to support strategic and local planning for the next plan period. The model software platform has been changed to VISUM.
- 1.1.2. The WSTM3 has been used for wider strategic testing, localised testing, plan policy evaluation and scheme appraisal within Wokingham Borough shaping transport planning policies and strategies. This has included:
 - Park and Ride Strategy Action Plan
 - Wokingham Town Centre Parking Strategy
 - Wokingham LSTF programme evaluation along the A329 corridor
 - Public consultation on locally significant schemes for Arborfield Relief Road, North Wokingham Distributor Road, South Wokingham Relief Road
 - DfT's LSTF funding (£2.75m) and funding from the Local Pinch Point Fund for:
 - A329 Coppid Beech Junction Improvement (£1.859m of £2.655m total scheme cost)
 - Station Link Road (£2.650m of £3.786m total scheme cost)
 - Section 106 contributions from developers:
 - Hatch Farm Dairies development to Winnersh Relief Road Phase 1
 - South of the M4 J10 development to Eastern Relief Road (ERR) east of Shinfield
 - Initial assessment of the viability for a Third Thames Crossing to support transport objectives of Wokingham and Reading Borough Councils
 - Business Case development and Planning Applications for the Arborfield Cross Relief Road (ACRR), South Wokingham Distributor Road (SWDR) and North Wokingham Distributor Road (NWDR).
- 1.1.3. Figure 1 shows the chronology of the development of the Wokingham Strategic Transport Model.

Figure 1 – WSTM Development Chronology

WOKINGHAM STRATEGIC TRANSPORT MODEL 4 (WSTM4) Project No.: 70014995 | Our Ref No.: 70014995 Wokingham Borough **Council** WSP May 2018 Page 1 of 60

- 1.1.4. The development of the WSTM4 base year model was completed in 2016 and was fully reported in the Local Model Validation Report, March 2017.
- 1.1.5. Testing of multiple future year 'with a scheme' and 'without a scheme' scenarios highlighted issues around model's stability. The 'Equilibrium_Lohse' assignment procedure in PTV's VISUM used to assign car demand often produced models which did not meet the convergence criteria, and hence could not be used as a robust basis for any assessment.
- 1.1.6. The WSTM4 was developed in VISUM 15, which was the latest version of the software available at the time of the model development. Since then PTV has implemented a number of software updates. VISUM 17 includes a new private transport assignment procedure called 'Equilibrium assignment Bi-conjugate Frank-Wolfe'. The implementation is mainly motivated as a better converging alternative to the 'Equilibrium_Lohse' assignment.
- 1.1.7. Assigning traffic to the network using the new assignment procedure addresses model convergence issues and produces more stable and expected results. On this basis and after discussions with WBC a decision has been made to update WSTM4 to VISUM 17.
- 1.1.8. As a result of the version change, the base year model validation fell slightly short of the DfT's TAG validation threshold, meaning that a model revalidation was required. This document provides an update to the LMVR (Highway only).

1.2 PROPOSED USES OF THE MODEL

- 1.2.1. The updated WSTM4 model will serve as a robust and up to date basis:
 - for scheme and development assessments in Wokingham borough (including funding applications)
 - in negotiations with the adjacent authorities, the Highways England and Network Rail
 - for assessing car parks management and re-development proposals in the borough
 - for the assessment of a new bridge across the River Thames east of Reading and the development of the Strategic Outline Business Case (SOBC) for the scheme.
- 1.2.2. The model purposes were drawn up in consultation with the relevant parties at WBC during winter and spring 2015. The public transport (PT) model is required to ensure compliance with Department for Transport (DfT) TAG guidance and to test enhanced public transport (PT) priority in relation to the new bridge east of Reading; however it was agreed during the consultation that the model will not be used for testing any PT transport strategies in Wokingham borough.
- 1.2.3. It should be made clear from the outset that the model development described in this report is proportionate to the intended application of the model.
- 1.2.4. The model will also be available to private developers to test the impacts of developments on the transport network in Wokingham borough. However, it should be noted that the model will be strategic in nature and local junction validation may be required if model outputs are to be used in detailed junction assessment. Private developers will need to discuss their individual requirements with the Council.

1.3 GUIDANCE

- 1.3.1. The model development has been guided by the following units of the DfT's TAG guidance:
 - Unit M1 "Principles of Modelling and Forecasting" (January 2014)
 - Unit M1.2 "Data Sources and Surveys" (January 2014)
 - Unit M2 "Variable Demand Modelling" (January 2014)
 - Unit M3.1 "Highway Assignment Modelling" (January 2014)
 - Unit M3.2 "Public Transport Assignment" (January 2014)
 - Unit M5.1 "Modelling Parking and Park and Ride" (January 2014).

1.4 **REPORT PURPOSE AND STRUCTURE**

- 1.4.1. This report details the development, calibration and validation of the WSTM4 base year model. The structure of this Local Model Validation Report (LMVR) is as follows:
 - Chapter 2 summarises key features of the WSTM4
 - Chapter 3 describes the highway network development
 - Trip matrix development is outlined in Chapter 4
 - Model calibration and validation is dealt with in Chapter 5

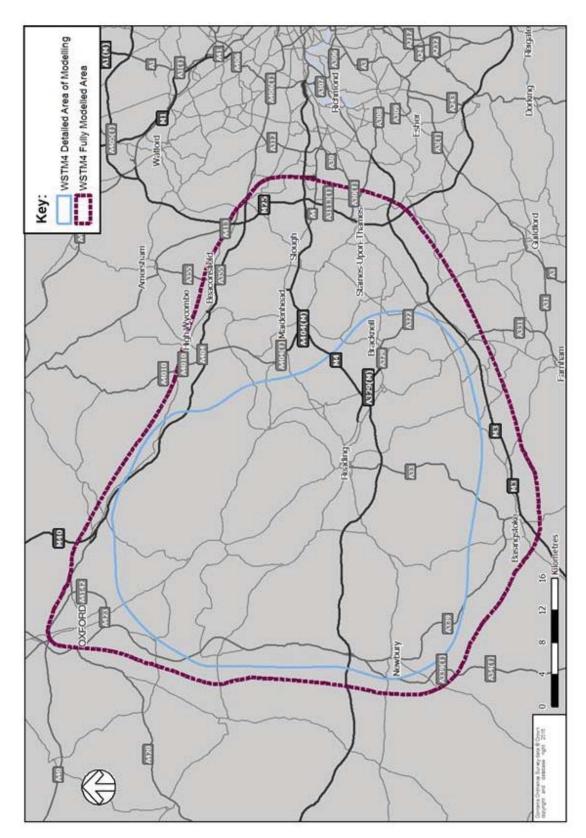
• Chapter 6 concludes the report.

2 KEY FEATURES OF WSTM4

2.1 MODELLED AREA

- 2.1.1. The WSTM4 Fully Modelled Area, formerly referred to as study area, is shown in Figure 2. As defined in the DfT's TAG, the Fully Modelled Area is the area over which proposed interventions are likely to have influence. In the WSTM4 the area is bounded by the M40 in the north, by the M25 in the east, by the M3 in the south and by the A339 and A34 in the west. The Fully Modelled Area is chosen to build a traffic model that covers a sufficient area to accurately model the reassignment and redistribution effects that are likely to be produced by new development and infrastructure schemes in Wokingham borough and by the new bridge east of Reading.
- 2.1.2. The fully modelled area is further subdivided into:
 - Area of Detailed Modelling as shown in Figure 2. This is the area over which significant impacts of interventions are certain. Modelling detail in this area would be characterised by representation of all trip movements, small zones, very detailed networks and junction modelling
 - Rest of the Fully Modelled Area. This is the area over which the impacts of interventions are considered to be quite likely but relatively weak in magnitude. It would be characterised by: representation of all trip movements, somewhat larger zones and less network detail than for the Area of Detailed Modelling, and speed/flow modelling (primarily link-based but possibly also including a representation of strategically important junctions)
 - The rest of the UK represents the External Area. In this area impacts of interventions are likely to be negligible. The External Area is characterised by skeletal networks and simple speed/flow relationships or fixed speed modelling and a partial representation of demand (trips to, from and across the Fully Modelled Area).

2.2 ZONING SYSTEM


- 2.2.1. The zone plan in the WSTM4 was devised to give a fine level of detail in the urban areas of Wokingham, Bracknell Forest, Reading and South Oxfordshire. The zones are coarser outside of the Area of Detailed Modelling and ultimately covering the whole of the UK (excluding Northern Ireland) in 643 zones. Compatibility between WSTM4 and TEMPRO v. 6.21 zone boundaries was ensured. Car parks and Park and Ride (P&R) sites in Wokingham, Reading and Bracknell Forest boroughs are modelled as separate zones.
- 2.2.2. The WSTM4 zone boundaries are shown in Figure 3 and Figure 4.

2.3 WSTM4 SECTORING SYSTEM

2.3.1. The WSTM4 zones have been aggregated into 32 sectors, which are shown in Figure 5 and Figure 6. Sectoring systems are normally used as a means of keeping track of the basic movements around the model, and for basic analysis within the model.

¹ The latest version available at the time of the model development

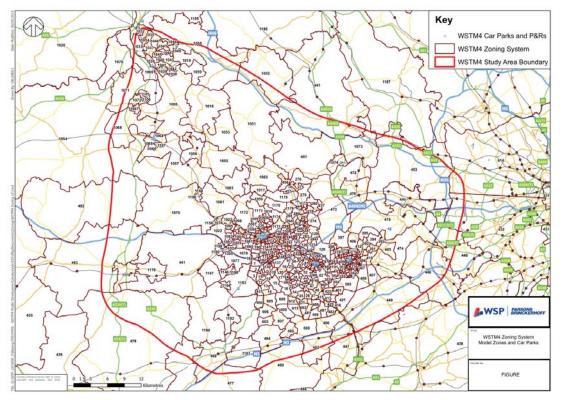


Figure 3 – WSTM4 Zoning – Fully Modelled Area

Figure 4 – WSTM4 Zoning System: Wokingham, Reading and Bracknell Forest Boroughs

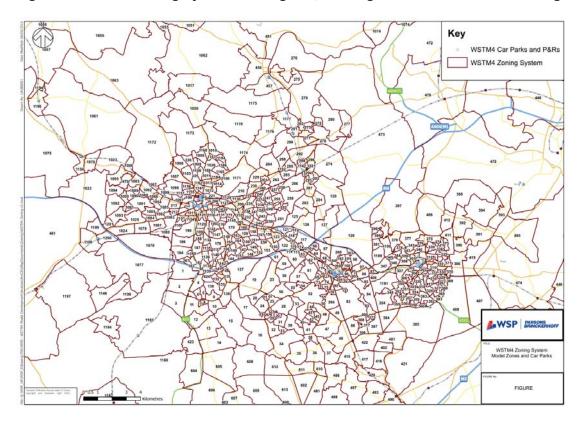


Figure 5 – WSTM4 Sectors (1)

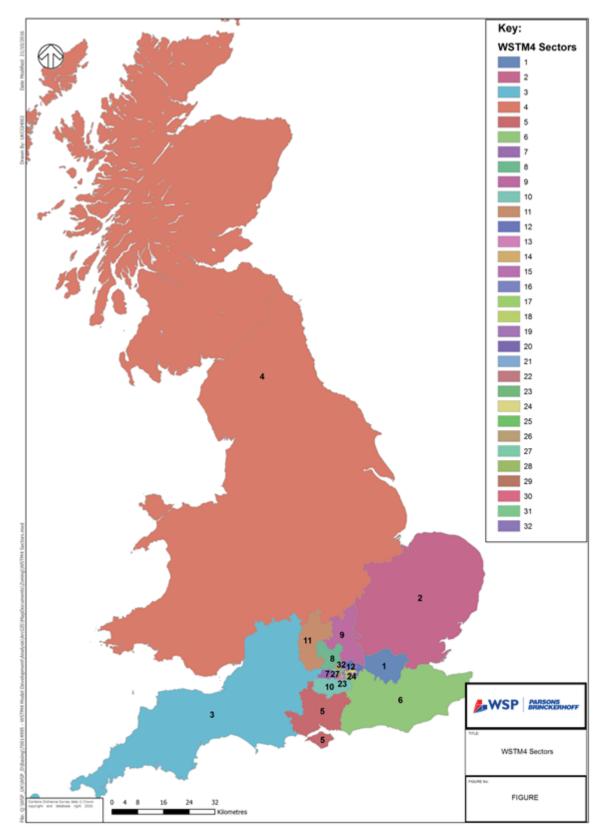
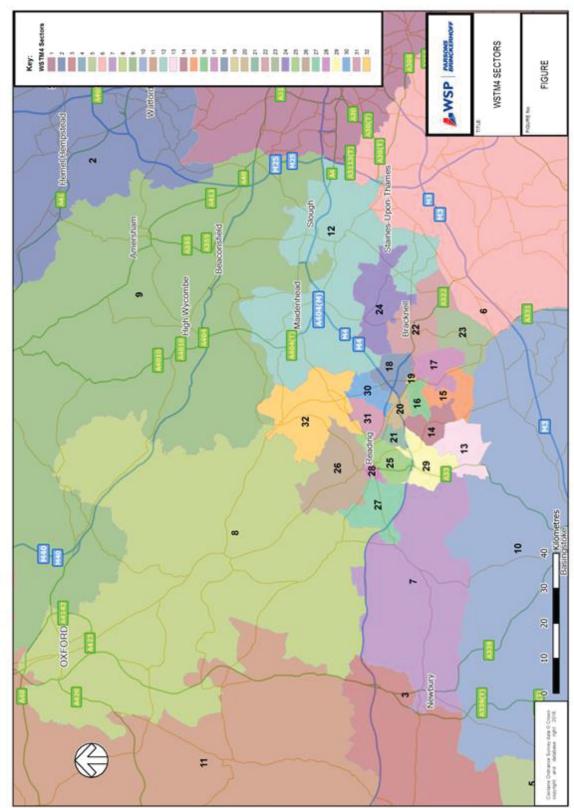



Figure 6 – WSTM4 Sectors (2)

File: CIVASP_UKVASP_DEBasing/10014005- W51M4 Model Development/knah/ais/NCCEMBpDocuments/2011/02/04/20146 Str10/20146 Str10/2014

2.4 MODEL YEARS

2.4.1. The base year of the updated WSTM4 is 2015.

2.5 TIME PERIODS

- 2.5.1. The base year models have been developed for the following time periods:
 - average Weekday (Monday to Thursday) AM peak hour (08:00 09:00)
 - average Weekday (Monday to Thursday) Inter peak hour (average 10:00 16:00)
 - average Weekday (Monday to Thursday) PM peak hour (17:00 18:00).
- 2.5.2. The modelled time periods have been used because traffic data analysis shows that 08:00-09:00 and 17:00-18:00 are the busiest hours within the Fully Modelled Area. For the Inter peak period (average 10:00-16:00) the traffic flow is reasonably consistent throughout the period therefore average Inter peak values were used.

2.6 MODEL STRUCTURE AND DEMAND SEGMENTATION

- 2.6.1. WSTM4 has inherited the WSTM3 model structure and consists of the following sub-models:
 - Highway model
 - Public Transport (PT) model
 - Variable Demand Model (VDM).
- 2.6.2. The highway model includes five user classes:
 - Car Work
 - Car Commuting
 - Car Other
 - LGV
 - HGV.
- 2.6.3. This is consistent with advice presented in Section 2.6 of TAG Unit M3.1 (January 2014)
- 2.6.4. PT model user classes include:
 - PT Work
 - PT Commuting
 - PT Other.
- 2.6.5. All PT matrices are split by car availability i.e. into car available (CA) and non-car available (nCA).
- 2.6.6. To summarise, the trip matrices are segmented as indicated below:
 - Time period: AM peak hour, Inter-peak period, and PM peak period
 - Mode: Private vehicle and Public transport
 - Vehicle types: Light vehicles and Heavy vehicles
 - Purpose: Work, Commuting and Other
 - Car availability: Car available and No car available (public transport only).

2.7 SOFTWARE PLATFORM

- 2.7.1. SATURN has been successfully used as a platform for the WBC highway model since 2008. However, it is being overtaken in functionality by new developing products. SATURN's modelling options interface, functionality and visual display are limited and there are less prospects for further development and improvements.
- 2.7.2. For the April 2018 WSTM4 model update PTV's VISUM 17.01-04 is used, a software program for traffic and transport analyses and forecasts. The use of a single software platform has combined the highway, PT and VDM models in one suite and allowed GIS based data management.

3 HIGHWAY NETWORK DEVELOPMENT

3.1 NETWORK DATA, CODING AND CHECKING

- 3.1.1. The 2010 WSTM3 SATURN network has been converted to VISUM. The converted network has been updated to take account of any changes that have occurred since the original WSTM3 was built. The already detailed WSTM3 network in Wokingham Borough and Bracknell Forest was further refined in Reading town centre, South Oxfordshire and areas around the proposed location on the New Thames Crossing east of Reading.
- 3.1.2. There is an inbuilt procedure within VISUM, which undertakes checks on all elements of the network coding within the model and highlights any coding errors. WSP have gone through these coding warnings, some of which have come about as a result of the change in software, and resolved all the issues identified.
- 3.1.3. The network was verified through the use of Google and OS maps, site visits and aerial photography. In particular, checks were carried out to verify:
 - Node co-ordinates
 - Link length
 - Speed/flow relationship
 - Link type
 - Link capacity
 - One way/two way operation
 - Length and position of flares
 - Any observed turn delays
 - Location of public transport routes
 - Access points.
- 3.1.4. Traffic loads onto the model network from zones in the form of centroid connectors. The centroid zone connectors in the updated WSTM4 have been reviewed and refined to realistically represent the way in which traffic joins the road network. In the Area of Detailed Modelling, where the zoning system is fine, specific access roads from residential and commercial areas have been used as a basis for connecting zones to the network via centroid connectors.
- 3.1.5. Zones in the External Area, which have a large geographical coverage and significant demand associated with them, have been generally connected to major routes to enter the network.

3.2 JUNCTIONS: FLOW/DELAY RELATIONSHIPS, SIGNAL TIMINGS, SATURATION FLOWS

- 3.2.1. Each junction included in the Fully Modelled Area required several parameters:
 - Geometries
 - Legs, lanes, and lane turns
 - Junction control type (two-way stop, two-way yield, signalised, roundabout, uncontrolled)
 - Turn types (Right turn; Straight ahead; Left turn; U-turn)
 - Signal times, stages and phases
 - Method of impedance at junctions.
- 3.2.2. All junctions within the Area of Detailed Modelling are modelled in detail. Every junction in this area uses the Node Impedance Calculation (ICA) to calculate the Method of Impedance at nodes. This is the PTV recommended method to be adopted on strategic models. ICA provides a model suitable for long term horizon planning with the added value that it can be used for operational planning. ICA was used for calculating junction capacities and delays based on junction geometry and layout input into the model, and did not require the saturation flows to be input explicitly.
- 3.2.3. For junctions outside the Area of Detailed Modelling the less complex 'Turns Volume Delay Function (VDF)' model was used. This required entering saturation flow, time (t0) and turn type.
- 3.2.4. The default capacity per lane adopted for two-way stop junctions using turn VDF were:
 - Major straight ahead movement (unopposed) 1,980 veh/hr

- Major left turn movement (unopposed) 1,500 veh/hr
- Major right turn movement (opposed) 745 veh/hr
- Minor left turn movement (opposed) 700 veh/hr
- Minor right turn movement (opposed) 600 veh/hr
- Minor straight ahead movement (opposed) 600 veh/hr.
- 3.2.5. Default capacities at signalised junctions using turn VDF were set to:
 - Straight ahead movement 1,980 veh/hr
 - Left or right turn movement 1,740 veh/hr.
- 3.2.6. Up-to-date signal data was obtained from Wokingham and Reading Borough Councils for use in the model update.
- 3.2.7. Default saturation flows at roundabouts using turn VDF are set to the values shown in Table 1.

APPROACH	NUMBER OF ENTRY LANES							
LANES	1	2	3	4				
Single (3.5m)	1,130	1,670	2,030					
Single (5.0m)	1,510	1,940	2,250	2,450				
Dual 2 lane		2,200	2,780	3,190				
Dual Lane			3,330	3,940				

Table 1 – Roundabout Saturation Flows

3.3 LINKS: SPEED/FLOW RELATIONSHIPS, FIXED SPEEDS

- 3.3.1. The link information (free flow speed, number of lanes, capacity) was reviewed and updated to June 2016 travel conditions typically using Google maps and local knowledge.
- 3.3.2. Table 2 shows the link types and associated capacity and free flow speed which were assigned to links within the WSTM4.

LINK TYPE NUMBER	DESCRIPTION	CAPACITY (VEHICLES)	FREE FLOW SPEED
1	Motorway (4 lanes)	8,760	101km/h
2	Motorway (3 lanes)	6,570	114km/h
7	Rural - S10 (Good)	4,020	93km/h
10	Rural - S7.3 (Typical)	1,640	74km/h
12	Rural - S6.5 (Poor)	1,640	64km/h
26	Urban - Non-central (Good)	1,560	44km/h
28	Urban - Non-central (Typical)	740	33km/h
30	Urban - Non-central (Poor)	450	24km/h
31	Small Town	1,200	93km/h
34	Country Lane	1,200	46km/h
50	Motorway (5 lanes)	10,950	101km/h
51	Motorway (6 lanes)	13,140	101km/h
96	On-street parking	99,999	50km/h
97	Walk link		4km/h

Table 2 – WSTM4 Link Types

LINK TYPE	DESCRIPTION	CAPACITY	FREE FLOW
NUMBER		(VEHICLES)	SPEED
98	Zone Access	99,999	50km/h

3.3.3. Following guidance in TAG unit M3:1 (January 2014) the links with a length of less than 200m in the Area of Detailed modelling were allocated fixed cruise speeds rather than link-based speed/flow relationships. The fixed cruise speeds are time specific and were derived from TrafficMaster journey time data.

3.4 ASSIGNMENT METHODOLOGY

- 3.4.1. The WSTM4 used assignment with ICA for the assignment of all user classes. This is the latest assignment algorithm developed by PTV, by which the assignment procedure itself calculates capacities on turns, based on junction geometry and flow levels, rather than being manually defined.
- 3.4.2. Traffic demand was assigned separately for Car (Car Work, Car Commuting, and Car Other), Light Goods Vehicles (LGV) and Heavy Goods Vehicles (HGV). In order that the route choice of HGV was realistic and for the most part limited to strategic and major roads, the HGV were assigned first onto an unloaded network. This was then followed by the assignment of LGV and then Cars.
- 3.4.3. LGV and HGV used the subordinate procedure Equilibrium assignment and Cars used Equilibrium assignment Bi-conjugate Frank-Wolfe. Figure 7 to Figure 12 show the chosen assignment procedure parameters.

Figure 7 – Assignment with ICA – Equilibrium Assignment Procedure Parameters Input

Use current assignment result as initial solution Initial occupancy Saturation flow rate of turns Number of lanes at shared lane total capacity for eac Minimum capacity of turns Blocking back model	th turn		•
Saturation flow rate of turns 1900 * Number of lanes at shared lane total capacity for each Minimum capacity of turns 10 *	ch turn		•
Number of lanes at shared lane total capacity for each Minimum capacity of turns 10	ch turn		•
Minimum capacity of turns 10 *			•
Blocking back model		1.0	
Use the link capacity for the blocking back model			
Link capacity model Capacity PrT			w.
Number of shares for the flow distribution 20			
Average space required per car unit 7.00m			
Exploit capacities of routes sequentially			
Exploit capacities evenly (faster)			

Figure 8 – Assignment with ICA – Equilibrium Assignment Procedure Parameters Procedure sequence

out Procedure sequence Output				
ibordinate assignment procedure	Equilibrium assignment		• [F	arameters
eight of the new solution for exponentia Jumes and turn capacities	al smoothing of turn		0.7	
Termination conditions				
Maximum number of outer iterations	50			
Condition			Share of the links / turn the condition is fulfilled	
GEH between the link volume of the p the current assignment is <=	previous assignment and	1		0.95
GEH between turning flows in previou assignment is <=	us assignment and current	1	Q.	0.95
GEH between turning flows in current ICA turning volumes is <=	t assignment and smoothed	1		0.95
Relative gap between Blocking back v at links is <=	wait time and VDF wait time	0.05	$= \frac{1}{1-1-1} = \frac{1}{1-1} = $	0.9
Relative gap between Blocking back at turns is <=	wait time and VDF wait time	0.05		0.9
Maximum deviation of the mean valu with congestion between the previou			lengths of all links 1	

Figure 9 – Assignment with ICA – Equilibrium Assignment Parameters

aramete	ers: Eo	quilibr	ium a	ssign	ment						×	
√ Use		-	·				ution					
		on with share			-	nment						
1	2	3	4	5	6	7	8	9	10	11	12	
100	0	0	0	0	0	0	0	0	0	0	0	
Termi	nation	condit condit	ion	npeda	nces o	falter	native	route	s:			
Abs	olute	deviat	ion							0		
Relative deviation 0												
Maxir	num n	umber	ofite	ration	S					20		
Maxin	num ga	ар								0.00	01	
Netwo	ork bal	ancing										
Maxir	num n	umber	ofite	ration	s				5			
								ОК		C	ancel	

nput Procedure sequence Output			
Use current assignment result as initial solution			
Initial occupancy			
Saturation flow rate of turns	1900	* Number of lanes	
Number of lanes at shared lane	share of capacit	ty for each turn	•
Minimum capacity of turns	10	* 1.0	
Blocking back model			
Use the link capacity for the blocking back model			
Link capacity model	Sum of turn cap	acities	-
Number of shares for the flow distribution	20	1	
Average space required per car unit	7.00m		
 Exploit capacities of routes sequentially 			
© Exploit capacities evenly (faster)			

Figure 10 – Assignment with ICA – Equilibrium Bi-conjugate Frank-Wolfe Procedure Parameters Input

Figure 11 – Assignment with ICA – Equilibrium Bi-conjugate Frank-Wolfe Procedure Parameters Procedure Sequence

Subordinate assignment procedure	ulibuium anaionanat	Bi-conjugate Frank-W		arameters
(Eq	uilibrium assignment	bi-conjugate Frank-W		arameters
Weight of the new solution for exponential smooth rolumes and turn capacities	ing of turn		0.7	
Termination conditions				
Maximum number of outer iterations	20			
Condition			Share of the links / turi the condition is fulfilled	
GEH between the link volume of the previous the current assignment is $\leq =$	assignment and	1		0.999
GEH between turning flows in previous assign assignment is <=	ment and current	1	· · · · · · · · · · · · · · · · · · ·	0.999
GEH between turning flows in current assignm ICA turning volumes is <=	ent and smoothed	1	Q	0.999
Relative gap between Blocking back wait time at links is <=	and VDF wait time	0.05	- <u> </u>	0.99
Relative gap between Blocking back wait time at turns is <=	and VDF wait time	0.05	Q	0.99
Maximum deviation of the mean value of the with congestion between the previous and the			ngths of all links	

Figure 12 – Assignment with ICA – Equilibrium Bi-conjugate Frank-Wolfe Parameters

ermination condition		
Maximum number of iterations	50	
Maximum gap	0.0001	

3.5 GENERALISED COST FORMULATIONS AND PARAMETER VALUES

- 3.5.1. Each private transport system in VISUM (car, LGV, HGV) has a defined cost-function which is usually a combination of time and distance, and any tolls or charges that may be in place in certain routes. The cost-function determines the overall cost of each available path between an OD pair, thus affecting the balance of trips on each path.
- 3.5.2. Highway generalised cost is defined as follows:

$$G_{CAR} = t_{ride} + \frac{d * VOC}{(occ * VOT)} + \frac{c_{park}}{(occ * VOT)}$$

where:

tride is the total time spent in vehicle (minutes)

d is the total distance travelled in the car (kilometres)

WOKINGHAM STRATEGIC TRANSPORT MODEL 4 (WSTM4) Project No.: 70014995 | Our Ref No.: 70014995 Wokingham Borough **Council** WSP May 2018 Page 15 of 60

VOC is the vehicle operating cost (pence per km)

occ is the occupancy

VOT is the value of time (pence per minute)

cpark is the parking cost, including any tolls (pence).

3.5.3. The DfT TAG Databook (November 20162) provided suitable values of time (VOT) and vehicle operating costs (VOC) to calculate cost function coefficients for different vehicle types. Within the 'Impedance' function in VISUM, the cost coefficients of time and distance were input in hundredths of seconds and hundredths of meters respectively, as shown in Table 3.

DEMAND	AM PEAK		INTER PI	EAK	PM PEAK		
SEGMENT	Time	Distance	Time	Distance	Time	Distance	
Car Commuting	33.3316	0.5635	33.8735	0.5635	33.4465	0.5635	
Car Work	49.7022	0.4696	50.931	0.4696	50.4195	0.4696	
Car Other	22.9962	0.5635	24.4964	0.5635	24.0818	0.5635	
LGV	35.1303	0.5568	35.1303	0.5568	35.1303	0.5568	
HGV	35.6642	2.6367	35.6642	2.6367	35.6642	2.6367	

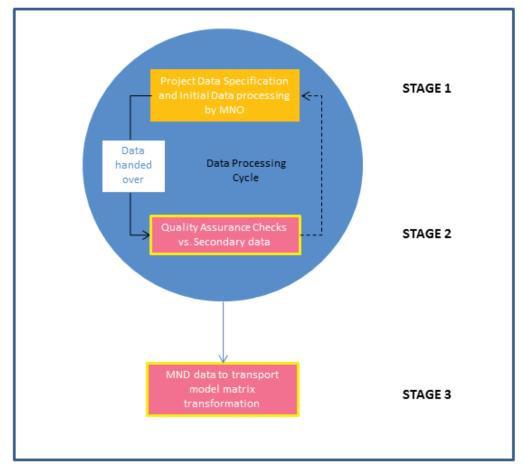
Table 3 - Generalised Cost Parameters

3.5.4. A more complete model of car generalised cost includes a weighted element representing the walk distance to the car. However, since these distances tend to be very short, and do not feature in drivers' interpretations of the cost of travel, they were excluded.

² Forthcoming change to TAG announced in July 2016 during model development to reflect updated values of travel time

۱۱SD

4 TRIP MATRIX DEVELOPMENT


4.1 INTRODUCTION

- 4.1.1. Traditionally Origin and Destination (OD) matrices are developed from a range of data sources, e.g. Census data, Road Side Interviews, travel diaries and other. Getting this information in large quantities and in the context of an urban area may be disruptive to highway users. The growth of technology has led to an increase in the type and amount of data automatically created and collected about people and freight movements. The vast majority of travellers today use mobile phones, which generate vast amounts of data. Every time a traveller's mobile phone talks to the network (texts, phone calls, pings, etc.) a record with the time and approximate location of the event is generated. The continuous recording of travel behaviour allows generating OD matrices of a high resolution.
- 4.1.2. For the WSTM4 development, WSP requested Citi Logik to capture Vodafone MND data and prepare initial OD matrices for the WSTM4 Fully Modelled Area. This MND supplemented with the existing data sources such as 2011 Census Data, TrafficMaster data, etc. has been used as the basis for the trip matrix development to match the WSTM4 model specification.
- 4.1.3. Citi Logik is partnered with Vodafone, which has over 19.5 million UK customers, to develop demand insights and predictive analytics derived from anonymised mobile phone network data in compliance with UK data privacy laws and future EU regulations. Citi Logik has developed a platform to collect and interpret the Vodafone data to process space and time information to inform a transport model development. Given the nature of MND, it is generally better at identifying longer trips and those where the user dwells at their destination for a longer period of time. MND also has limits on detailed information as we cannot directly learn about every individual's travel motives (trip purpose) or directly ask questions, for example, about income band. For these reason, the data need to be combined with other data sources prior to application.
- 4.1.4. WSP has researched this field and developed a robust methodology to produce a set of prior demand matrices from MND. It should be noted that there is currently no guidance available on the use of MND. We were engaged in the work Catapult was undertaking for the DfT to produce guidance to support the clear and consistent use of MND in transport modelling and appraisal and the work undertaken for the Highways England on the Regional Model Matrix Development and have applied knowledge gained to the development of the WSTM4 trip matrices.

4.2 OVERVIEW OF THE METHODOLOGY

Development of the WSTM4 demand matrices from MND follows three main stages as shown in Figure 13.

Figure 13 – Approach Overview

Source: "Utilising mobile phone data for transport modelling", 2016, Catapult

4.3 STAGE 1. INITIAL PROCESSING OF MND

- 4.3.1. At Stage 1 MND is captured and undergoes initial processing by Citi Logik. This included generation of travel demand matrices at the aggregated WSTM4 zone level (WSTM4 MND sectors) and segmentation of trips by day of the week, time of the day, mode, purpose and direction in order to allow the development of travel demand matrices for the Fully Modelled Area.
- 4.3.2. Through the network topology and behaviour, people's movements are accurately located in space and time, which is processed to derive OD movements. For data security and privacy reasons, the data is provided by Citi Logik to WSP at an aggregated level so that individuals cannot be traced. Typically in dense urban and urban fringe areas Citi Logik is able to allocate mobile phone signals to areas similar to Lower Super Output Areas (LSOA) in size, whereas in rural areas the signals can be accurately allocated to areas, which can combine a number of LSOA.
- 4.3.3. Position information is obtained from both active and inactive phones as they switch between adjacent mobile network cells. Active phones are more likely to be used by people travelling on foot, by public transport or as car passengers. Inactive phone positions, derived as phones switch cells, are usually typical to car drivers.
- 4.3.4. Data has been provided for all movements to, from, within and passing through the Fully Modelled Area.
- 4.3.5. Monday to Thursday data has been provided for the period between 10 November 2015 and 22 November 2015 for the following time periods:
 - AM peak period (07:00-10:00)
 - Interpeak period (10:00-16:00)
 - PM peak period (16:00-19:00)
 - Off-peak (19:00-07:00).

WSP May 2018 Page 18 of 60

- 4.3.6. Trips have been allocated to the following modes:
 - Motorised (Cars/LGV/HGV/Bus)
 - Rail
 - Slow 3
 - Static4.
- 4.3.7. Matrices have been disaggregated to the following purpose segmentation:
 - HBW: Home to Work
 - HBO: Home to Other place (not Work)
 - NHB: From Elsewhere (not home) to Work and other places
 - Unknown.
- 4.3.8. The MND data has been expanded to the total adult population.
- 4.3.9. The output of this stage is expanded OD matrices at MND sector level. There are 236 MND sectors in total, which represent an aggregation of the WSTM4 zones.
- 4.3.10. Vodafone privacy rules have been applied to the OD trip data, meaning that all values lower than 15 in the output files were set to 15, thus protecting mobile users' privacy. Such a high threshold applied to the OD data may result in unrealistically high demand for a large number of movements and distort the distribution of trips. To address this data limitation imposed by the privacy rules, WSP have requested and been provided with the trip end information for each demand segment for subsequent furnessing of the matrices and controlling of trip ends to the true values.
- 4.3.11. Further details about the initial data processing undertaken by CitiLogik are provided in Appendix A-1.

4.4 STAGE 2 - MND VERIFICATION

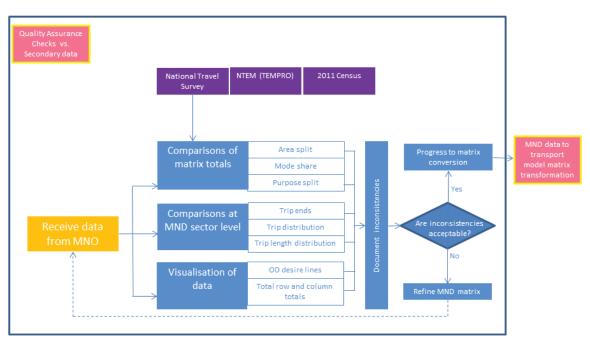
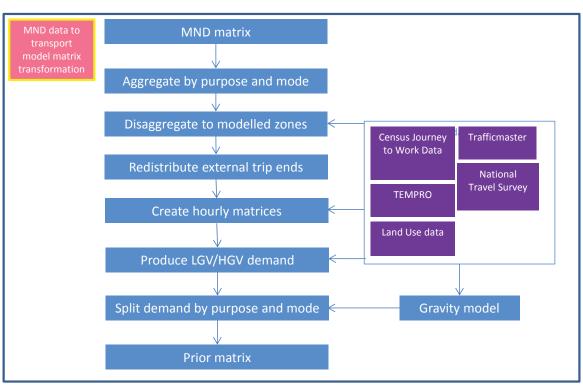

- 4.4.1. The OD matrices estimated from MND have certain strengths compared to conventional sources of OD information: data is collected from a large percentage of the population, capturing day-to-day variability of trips. However, MND is a relatively new data type which is not collected exclusively for the purpose of transport planning and one should be aware of and recognise potential limitations of using mobile phone data in the following aspects:
 - spatial resolution and data accuracy
 - identification of short trips
 - identification of mode, vehicle type and vehicle occupancy
 - identification of trip purpose
 - expansion of mobile phone data sample.
- 4.4.2. To gain confidence that the overall pattern of trips produced from MND is reasonable and to identify any potential issues associated with the initial processing of MND undertaken by Citi Logik, it is important to compare the MND with alternative well-established data sources. Any issues identified at this stage are fed back to Citi Logik for further refinement of the process or addressed during the follow up stages of matrix building.

Figure 14 provides an overview of the MND verification process.

³ The Slow mode is not represented in the model and therefore has been excluded from further analysis

⁴ Though Static trips were provided, this segment of data has been excluded from any further analysis due to its limited value for building demand matrices

Figure 14 – MND Verification Process



Source: adapted from "Utilising mobile phone data for transport modelling", 2016, Catapult

- 4.4.3. Various tests have been undertaken to validate trip matrices developed on the basis of Vodafone customers' movements for the WSTM4 modelled area. Appendix A-2 has described the results of the MND verification. The following conclusions can be drawn from that process:
 - The combined Motorised and Rail demand is reasonably robust in terms of overall trip distribution, time split and representation of short-distance trips
 - A good symmetry is observed confirming the realism of the demand observed by MND analysis
 - Trips to/from WSTM MND sectors correlate well with the 2011 Census population
 - Mode or purpose split is not represented within MND with a high degree of accuracy.
- 4.4.4. A comprehensive verification process has been undertaken by WSP The analysis confirms that despite a number of potential issues outlined above the MND data accurately represents observed trip patterns and can be used as a basis for prior matrix development.

4.5 STAGE 3. PRIOR MATRIX DEVELOPMENT TO THE WSTM4 MODEL SPECIFICATION

4.5.1. Development of initial demand matrices to the WSTM4 specification requires the use of other post-processing techniques, which are outlined in Figure 15.

Figure 15 - MND Matrices to WSTM4 Matrices Process Overview

Source: adapted from "Utilising mobile phone data for transport modelling", 2016, Catapult

- 4.5.2. The following key steps need to be completed in order to develop prior matrices from the MND matrices obtained at Stage 2.
 - Aggregate MND demand matrices by purpose and mode
 - Disaggregate demand from WSTM4 MND sectors to WSTM4 zones
 - Refine the distribution of External trip ends
 - Produce hourly matrices from peak period demand
 - LGV and HGV trips
 - Split the demand by purpose and mode using a gravity model.
- 4.5.3. The methodology uses VISUM at each step of calculation and matrix manipulation which helps to build a very efficient process when working with large matrices. All the matrix development steps are included in a procedure sequence, which can be saved and transferred to other VISUM version files and projects if required. Background calculations are also undertaken using a set of extra spreadsheets.
- 4.5.4. The process will produce a set of prior demand matrices matching the WSTM4 specification:
 - Time period: AM peak, Interpeak and PM peak hours
 - Mode and vehicle type: Car, Public Transport, LGV and HGV
 - Purpose split: Commuting (including Education), Employee's Business, Other.

4.6 AGGREGATION OF MND RAW MATRICES

4.6.1. The MND matrices originally were produced with a time, purpose and mode split. However the verification process highlighted that mode or purpose split are not represented within MND with a high degree of accuracy. Therefore the MND matrices were aggregated by purpose and mode to be then disaggregated using an alternative approach described further in this section.

4.7 DISAGGREGATION OF DEMAND FROM WSTM4 MND SECTORS TO WSTM4 ZONES

4.7.1. The original MND matrices were provided at the WSTM4 MND sector level, which represented an aggregation of the WSTM4 zones. The WSTM4 zones are nested within the MND sectors and the zone boundaries

completely match with each other. The WSTM4 has a zone system of 643 zones whereas the MND sectoring contains 236 zones in total. The mismatch in the number of zones means that a disaggregation of original MND demand to the WSTM4 zones had to be carried out.

- 4.7.2. The disaggregation has followed the methodology originally developed by WSP for Transport for London (TfL) to split spatially coarse LTS trip ends into smaller LoHAM zoning system. The methodology utilises the following land use data:
 - Numbers of domestic delivery addresses from Ordnance Survey Codepoint data
 - Workplace population from 2011 Census information
 - Edubase pupil number data.
- 4.7.3. Domestic delivery addresses, workplace population and Edubase pupil numbers have been assigned to the WSTM4 zones based on the centroids of their respective layers. The MND matrices have been disaggregated using a combination of datasets using the weighting factors from the work carried out for TfL in London.
- 4.7.4. The methodology behind carrying out this correspondence process in this manner is that the determination of how many trips would be expected to come out of any specific area within these initial zones should be based on a relevant dataset. For example, morning trips should have predominantly origins of homes, and destinations of workplaces (which in this case include places of education). This enables an initial sector that contains say a large residential area, and a large employment area, but where the final zones have these two areas as separate zones, to be split in a way that means the final trip matrices make a lot more sense, than just splitting proportionally by area in all cases.

4.8 REFINEMENT OF THE DISTRIBUTION OF EXTERNAL TRIP ENDS

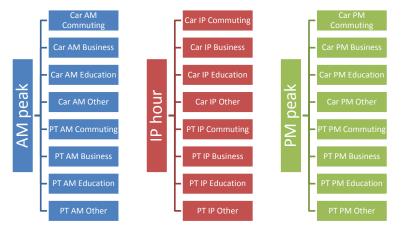
- 4.8.1. Due to the data collection method the true trip ends of the external movements are unknown with the trip ends allocated to an external zone closest to the boundary of the modelled area. To ensure a much more precise cost and skim calculation of such trips the external trip ends need to be redistributed and this was undertaken based on the 2011 JTW data.
- 4.8.2. Destination trips ends were refined using the JTW destination trip end distribution for all time periods. The JTW data provides information about a single direction only i.e. home to work, and therefore the data was transposed for the purpose of adjusting the External origin trip ends of the MND data.
- 4.8.3. The above approach has been applied to Internal-External and External- Internal movements. The trip ends of the External-External movements (except London-based) were not refined further as these trips are fixed within the variable demand model and the knowledge of the true trip ends will not make any difference to the results.

4.9 CREATION OF HOURLY MATRICES

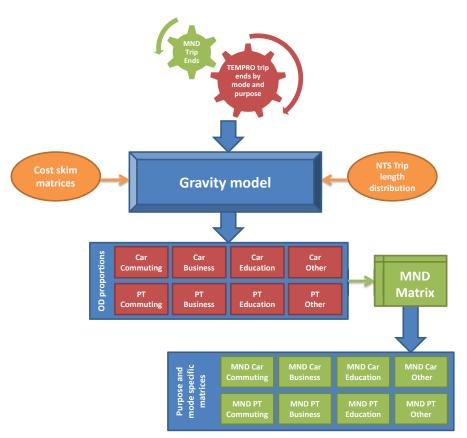
- 4.9.1. Creating hourly matrices is a single step where overall factors are used to factor down the peak period matrices into hourly matrices. The factors have been derived from NTS and are as follows:
 - AM peak: 0.506
 - IP average: 1/6
 - PM peak: 0.370.

4.10 LGV AND HGV TRIPS

- 4.10.1. Trafficmaster OD data was obtained from the DfT covering a period between September 2014 and August 2015. This data includes information on LGV and HGV movements between 2011 Census LSOA boundaries. The DfT were able to provide this data using the same cordon provided to Citi Logik for the MND collection, which ensured the consistency between the two datasets.
- 4.10.2. Matrices were then built from the Trafficmaster data for LGV and HGV trips and the following occupancy factors have been applied to produced vehicle trip matrices to ensure consistency with the WSTM4 specification:
 - LGV: 1.23 person/vehicle
 - HGV: 1.00 person/vehicle.
- 4.10.3. The HGV and LGV matrices were then assigned in the highway model, with the results compared against screenlines. It is a known limitation of Trafficmaster OD data that the sample size is low, therefore once the


assignment of these vehicle types was carried out, the flows were initially scaled up using 'flow bundle' analysis to ensure the flows matched observed counts. The LGV and HGV matrices were then run through matrix estimation to produce final LGV and HGV matrices.

4.10.4. The resultant LGV and HGV trip matrices were then subtracted from the MND matrices. The remaining MND demand represents car, bus and rail combined matrices.


SPLIT THE DEMAND BY PURPOSE AND MODE

4.10.5. A gravity model has been developed to split the combined demand by purpose (Commuting, Education, Employer's Business and Other) and by mode (public transport and car). The Commuting and Education purposes were later combined to form a single Commuting purpose. The outputs of the gravity model are used to produce mode and purpose specific proportions for individual OD relations, which are then applied to the combined MND matrices to calculate car and public transport matrices as shown in Figure 16.

4.10.6. Development of purpose and mode specific demand matrices requires the use of the method and steps which are outlined in Figure 17. The same approach has been applied to all time periods.

Figure 17 - Outline of how the gravity model is used for mode and purpose split

- 4.10.7. The MND trip ends from the combined matrices were split using mode and purpose specific proportions extracted from TEMPRO v 6.2 to produce target trip ends for the gravity model. The trip length distribution data for the gravity model calibration comes from the NTS and varies by journey purpose and mode. The daily averages were used for each time period as it was found that there is no significant difference in individual time periods in the modelled area.
- 4.10.8. The cost for the gravity model represents uncongested generalised cost matrices produced from assigning LGV/HGV matrices for highway and dummy low value matrices for the public transport. These costs are used directly as utility functions in VISUM trip distribution procedure.
- 4.10.9. The intra-zonal trips have been initialised prior to running the gravity model and will not be taken into account at any further stages. The External-External movements have been excluded from the gravity model and were split by mode and purpose using a set of factors calculated using TEMPRO v 6.2. The factors are reproduced in Table 4.

EXTERNAL FACTORS						
Period	Purpose	Factor (Car)	Factor (PT)			
	Commuting	0.416	0.075			
AM	Business	0.053	0.003			
AIVI	Education	0.160	0.062			
	Other	0.209	0.021			
IP	Commuting	0.142	0.019			
	Business	0.058	0.003			
	Education	0.089	0.025			
	Other	0.577	0.088			
PM	Commuting	0.320	0.052			
	Business	0.049	0.004			

Table 4 – External factors to mode and purpose split

EXTERNAL FACTORS						
	Education	0.043	0.012			
	Other	0.479	0.042			
	Commuting	0.044	0.003			
OP	Business	0.015	0.002			
	Education	0.337	0.018			
	Other	0.553	0.030			

4.10.10. The gravity model was set up in VISUM using the parameters shown in Figure 18.

Figure 18 – Gravity model in VISUM

rameters: De	emand distribution			-				
For active	OD pairs only							
Exclude Of	D pairs connecting passive	e zones						
Set any re	sult demand matrix to 0 p	rior to calculation						
Apply estin	nated parameters							
Count: 32	Demand stratum	Utility function	Function type	а	b	с	Direction parameters	
1	Car_AM_Business	Matrix([NO] = 4203)	Kirchhoff	0	0	-1.75	Productions, Doubly constrained	 Matrix([DMODE
2	Car_AM_Commuting	Matrix([NO] = 4202)	Kirchhoff	0	0	-1.75	Productions, Doubly constrained	 Matrix([DMODE
4				0	-0.015	2	Productions, Doubly constrained	Mathin (EDMODE
3	Car_AM_Education	Matrix([NO] = 4205)	BoxCox	0	-0.015	-5	Produccions, Doubly consciance	 Matrix([DMODE

- 4.10.11. The trip distribution functions are the same for each time period including the function type and parameters as well:
 - Car Commuting: f(U)=U^c, c=-1.75 (Kirchhoff)
 - Car Business: f(U)=U^c, c=-1.75 (Kirchhoff)
 - Car Education: f(U)=e^[c(U^b-1)], b=-0.015; c=-1.75 (Box-Cox)
 - Car Other: f(U)=U^c, c=-2.25 (Kirchhoff)
 - PT Commuting: f(U)=e^[c(U^b-1)], b=0.1; c=-0.5 (Box-Cox)
 - PT Business: f(U)=e^[c(U^b-1)], b=-0.15; c=-0.15 (Box-Cox)
 - PT Education: f(U)=e^[c(U^b-1)], b=-0.2; c=-7 (Box-Cox)
 - PT Other: f(U)=U^c, c=-3 (Kirchhoff).
- 4.10.12. The functions and their parameters have been calibrated using a trip length distribution comparison spreadsheet with NTS data including 44 distance bands and graphical analysis. The comparison has been undertaken for the whole modelled area and for the core modelled area covering the high density urban areas of Reading, Wokingham and Bracknell, the fine zone structure within this area will ensure the short distance trips are present within the demand matrices. An example of the trip length distribution calibration is presented in Figure 19.

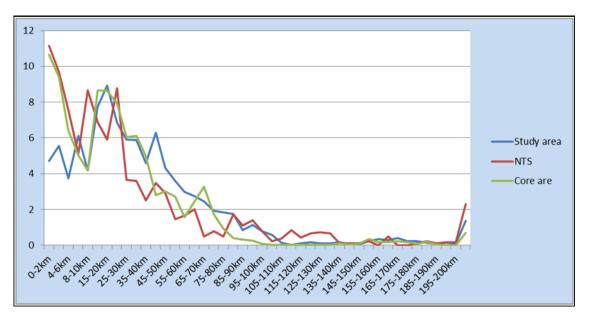


Figure 19 – Example of a trip length distribution calibration diagram

- 4.10.13. The mode and purpose specific MND matrices were produced by applying the following formula: [MND CAR AM COMMUTING] = [GRAVITY MODEL CAR AM COMMUTING] / [GRAVITY MODEL AM TOTAL] * [MND AM TOTAL]
- 4.10.14. The MND car matrices were finally converted from person trips to vehicle trips using different factors for each journey purpose. Factors were derived from TAG Databook Table A.1.3.3 (2015, version 1.45) and are shown below:
 - Commuting:1.15
 - Business: 1.21
 - Other: 1.72.

⁵ The latest version available at the time of matrix development, as the model build progressed, November 2016 values were used following advice from DfT

۱۱SD

5 HIGHWAY MODEL CALIBRATION AND VALIDATION

5.1 INTRODUCTION

- 5.1.1. Calibration of the 2015 WSTM4 highway model involves ensuring the model represents the on-site observed conditions by adjusting model inputs and parameters. The process involves examination of the network, checking for errors, and improving the performance of the model in terms of comparisons with observed data. Calibration statistics will be presented using the DfT TAG criteria.
- 5.1.2. Model validation is a comparison of model output data with observed data to assess the accuracy of the model and is therefore very similar to model calibration. The difference between the two is that validation data is independent from model development data i.e. it is not used at any stage within the model development.

5.2 APPROACH OVERVIEW

- 5.2.1. Calibration and validation is undertaken for the four main components of the model:
 - Network calibration and validation
 - Route choice calibration and validation
 - Trip matrix calibration and validation
 - Assignment calibration and validation.
- 5.2.2. Each of the tasks above is linked with each other and it is often a combination of all that are required to address each problem identified by the calibration and validation process. Each of the tasks is considered further in this section in turn.

DATA

- 5.2.3. Several sources of already available data have been utilised, these are:
 - TRADS data from the Highways England's HATRIS website
 - Local Authorities permanent Automatic Traffic Counts (ATC)
 - Previously collected Manual Classified Counts (MCC) data in Wokingham
 - Additional ATC and MCC collected during September / October 2015.

All the survey locations, which have been utilised in the model calibration or validation, are graphically shown in Figure 20 and Figure 21.

۱۱SD

Figure 20 – Survey Locations (1)

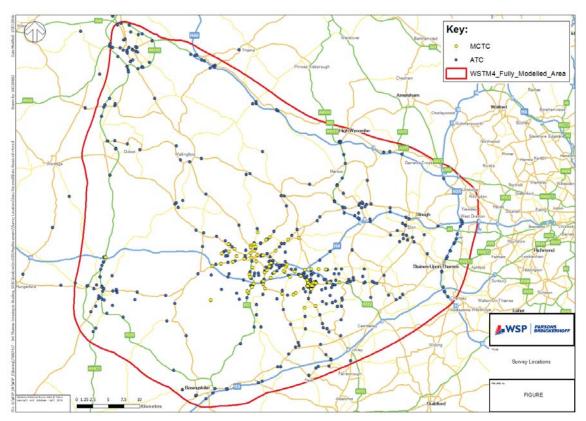
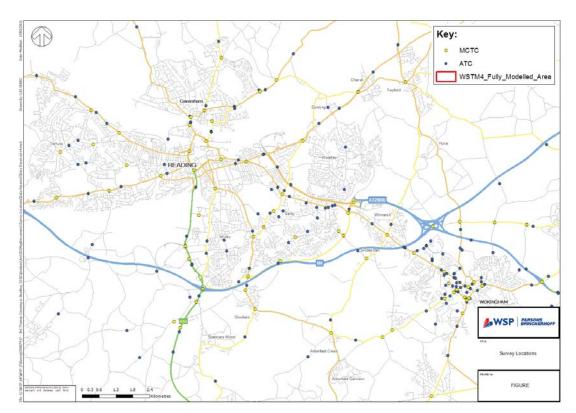
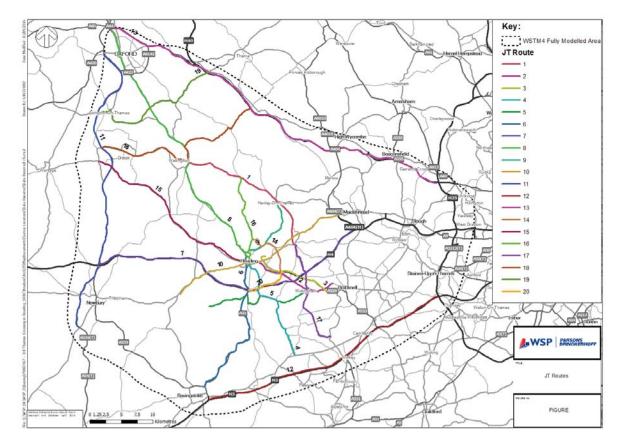




Figure 21 – Survey Locations (2)

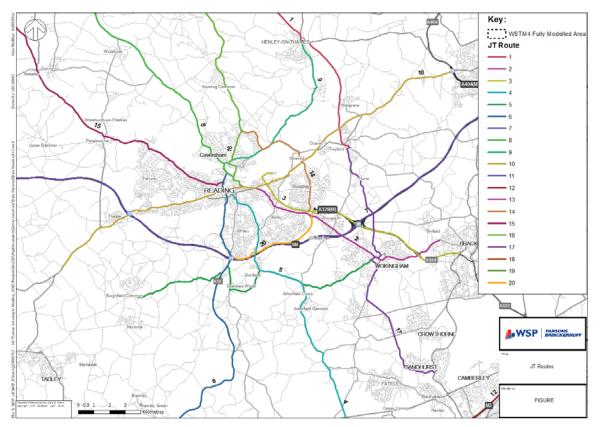

- 5.2.4. Journey time data was obtained through TrafficMaster via the DfT for the period between September 2014 and August 2015 and was used to derive travel times for key routes through the model. Information was taken for an average weekday drawn from a two weeks' worth of data, for the closest available period to the other traffic survey data.
- 5.2.5. The accuracy of the data has been calculated and reported in the "WSTM4 Data Collection Report" (February 2017).
- 5.2.6. Figure 22 and Figure 23 show the location of the journey time routes used in the WSTM4.

Figure 22 – Journey Time Routes (1)

۱۱SD

Figure 23 – Journey Time Routes (2)

NETWORK CALIBRATION

- 5.2.7. Following the creation of the network as outlined in Chapter 4, an initial assignment has been carried out prior to any adjustment of the demand matrices. The results have been compared against observed flows, speeds and delays to identify any further areas which may require adjustment to the network coding. In particular, the following instances have been checked:
 - Turn / link capacity is less than observed count
 - Calculated delays significantly greater than observed delays
 - Modelled flows significantly above observed flows
 - Modelled delays unacceptably lower than observed delays.
- 5.2.8. Remedial action on the network coding was undertaken where the above were identified; changes have only been made that are in accordance with direct observations of actual network properties.

NETWORK VALIDATION

- 5.2.9. Validation of the final network in isolation of the development of the final trip matrix was not possible, but high level checks were undertaken following development of initial trip matrices to investigate modelled journey times on routes that differ from observed times by more than 25%.
- 5.2.10. Network validation has been confirmed through presentation of time/distance graphs for each modelled journey time route, as discussed below.

ROUTE CHOICE CALIBRATION

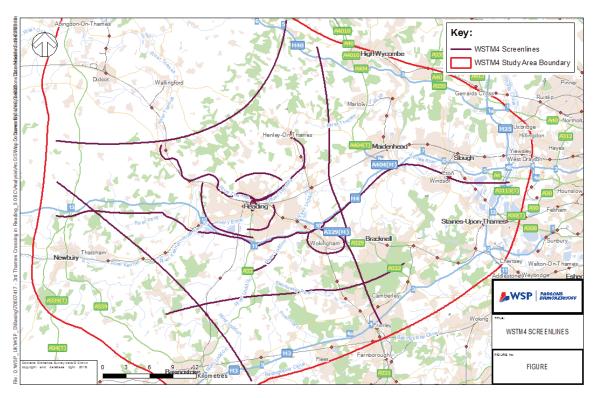
- 5.2.11. At various stages of model development, the minimum cost routes for a range of selected O-D pairs were plotted and checked for plausibility. Modelled route choice depends on:
 - Zone size
 - Network structure
 - Centroid connectors
 - Trip matrix accuracy

- Representation of speeds and delays
- Junction coding accuracy.
- 5.2.12. Where routes were found to be implausible one or more of the above aspects have been adjusted.

ROUTE CHOICE VALIDATION

- 5.2.13. Sense checks were carried out on a number of strategic and local routes across the study area. In particular, motorway route choice was checked so that key strategic routes were chosen rather than short-cuts.
- 5.2.14. Following calibration and validation of the model, information has been presented for a selected number of origin-destination pairs to demonstrate that the routing is logical. To some extent this is not true validation, as there is no empirical data to act as a benchmark, but selected routes plotted from VISUM have been compared to equivalent routes prepared using Google Maps, supported by a commentary discussing the feasibility of each route.
- 5.2.15. Routes selected focus on important centres of population or employment, or through key intersections. They:
 - Relate to significant numbers of trips
 - Are of significant length
 - Pass through key areas of interest
 - Include both directions of travel
 - Link different compass areas
 - Coincide with journey time routes, where appropriate.

TRIP MATRIX CALIBRATION


- 5.2.16. Following the development of the prior trip matrices, matrix estimation techniques have been undertaken.
- 5.2.17. Matrix estimation, T-Flow Fuzzy in VISUM, was used on all calibration screenlines, cordons and counts. Within the matrix estimation procedure in VISUM it is possible to use both screenlines and individual links for matrix estimation. This was undertaken once to the prior matrix to derive final WSTM4 results.
- 5.2.18. Guidance presented in section 8.3 of TAG Unit M3.1 (January 2014) was followed. In particular:
 - Counts used in matrix estimation were derived from a minimum 2-week ATC
 - Count constraints were grouped at a screenline level
 - Constraints were only applied to directly observed counts, e.g. all car user classes were grouped to a single "car" constraint.
- 5.2.19. To ensure that matrix estimation was a controlled process, due care and attention was given to the requirements set out in TAG to monitor the impacts of matrix estimation. Information has been therefore presented on:
 - Regression statistics at trip end level
 - Trip length distributions with means and standard deviations.

TRIP MATRIX VALIDATION

- 5.2.20. Information has been presented for both the prior and post matrix estimation matrices on the following:
 - Screenlines and cordons of counts used in matrix estimation.
- 5.2.21. In accordance with the requirements presented in section 3.2 of TAG Unit M3.1 (January 2014), screenline totals are presented for each vehicle type. Total modelled flows across screenlines for each vehicle type should be within 5% of observed flows. TAG recommends that this should apply to "all, or nearly all" screenlines. We have applied a threshold of 85% of screenline totals to meet this criterion.
- 5.2.22. From the data that is available, the following screenlines were used for the WSTM4 which are illustrated in Figure 24.

۱۱SD

Figure 24 – Highway Model Screenlines

ASSIGNMENT CALIBRATION

- 5.2.23. Assignment calibration simply involves further steps to identify any issues that are preventing an acceptable level of calibration of the network, route choice and trip matrix, as outlined above. This included:
 - Checking appropriateness of centroid connectors
 - Production of forests to understand nature of competing routes between OD pairs
 - Checking representation of queues on surveyed journey time routes.
- 5.2.24. A few additional changes were required to signal times, saturation flows, lane use, etc. to resolve the assignment calibration issues identified.

ASSIGNMENT VALIDATION

- 5.2.25. In addition to the calibration/validation aspects described above, final validation of the model has been confirmed through presentation of modelled and observed data for the following:
 - Traffic flows on links In addition to the screenline information flows have been presented on individual links for cars, LGV and HGV
 - Journey times Information presented along whole routes, with means and 95% confidence intervals, supplemented with time/distance graphs
 - Turning movements Information presented for key junctions, aggregated across all vehicle types. Since these are obtained from single day MCC, they did not achieve the same standards as link flows derived from ATC.

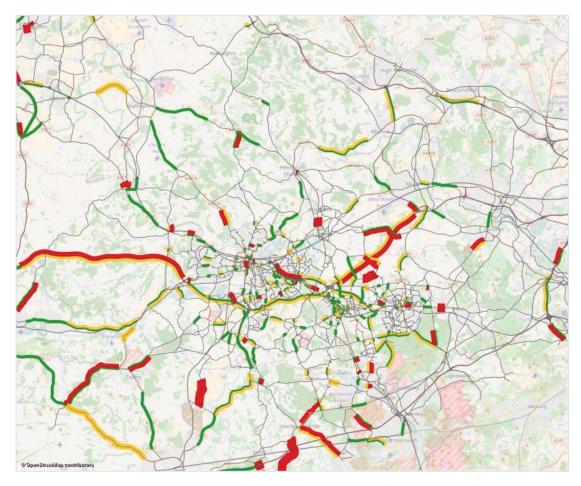
5.3 SUMMARY OF CALIBRATION AND VALIDATION CRITERIA

5.3.1. TAG Unit M3.1 'Highway Assignment Modelling' (January 2014) highlights the tests that must be passed in the calibration and validation of link, turning count, screenlines and journey time data Acceptability criteria are given in Table 5.

Table 5 – Acceptable Criteria

CRITERIA	DESCRIPTION OF CRITERIA	ACCEPTABILITY GUIDELINE
	Individual flows within 100 veh/hr of counts for flows less than 700 veh/hr	> 85% of cases
Links / Turns (1)	Individual flows within 15% of counts for flows from 700 veh/hr to 2,700 veh/hr	> 85% of cases
	Individual flows within 400 veh/hr of counts for flows more than 2,700 veh/hr	> 85% of cases
Links / Turns (2)	GEH < 5 for individual flows	> 85% of cases
Screenlines	Differences should be less than 5% of counts	All or nearly all screenlines
Journey Times	Modelled times along routes should be within 15% of surveyed times (or minute, if higher than 15%)	> 85% of routes

- 5.3.2. In addition for individual flows, the criterion for passing the assessment is based upon a GEH comparison between modelled and observed flow. GEH is a modified Chi-squared statistic comparing relative differences between observed and modelled flows and a value of less than 5 is considered a close match. Using the GEH parameter ensures that the test is appropriate for both small and large flows within the matrix.
- 5.3.3. TAG Unit M3.1 (January 2014) states that the absolute and percentage differences between modelled flows and observed counts and the GEH measures are broadly consistent and links flows that meet either criterion should be regarded as satisfactory.


5.4 PRIOR MATRIX PERFORMANCE

- 5.4.1. Significant work and investigations were undertaken to ensure the prior matrix performance within the WSTM4 was as good as possible prior to using matrix estimation. The aim was to ensure calibration counts achieved around 50% of counts meeting flow or GEH criteria.
- 5.4.2. Table 6, Table 7 and Table 8 present the WSTM4 highway model matrix performance for the three time periods with Figure 25, Figure 26 and Figure 27 presenting the link performance graphically. All links meeting flow or GEH link based criteria are coloured green, those not meeting flow criteria but have a GEH between 5 and 10 are orange and those with GEH > 10 are red.

Table 6 - WSTM4 AM peak Prior Matrix Performance Link Statistics

				ALL				CAR						
Criteria and	Measure	Acceptability Guideline	c			2	VALIDATION	IDATION CALIBRATION VALU			VALIDATIO	N		
Observed	Flow Criteria Modelled	a	Total Counts	Meet Criteria	%	Total Counts	Meet Criteria	%	Total Counts	Meet Criteria	%	Total Counts	Meet Criteria	%
< 700 pph	±100 vph	> 85 % of links	289	146	51%	117	95	81%	325	174	54%	123	93	76%
700 - 2,700 vph	±15%	> 85 % of links	165	91	55%	35	29	83%	136	83	61%	29	24	83%
> 2,700 vph	±400 vph	> 85 % of links	28	11	39%	2	1	50%	21	17	81%	2	2	100%
	GEH Criteria	ı İ		,	``````````````````````````````````````		\ \		Ì	,	•	,		,
GEH Statistic t links ·		> 85 % of links	482	230	48%	154	110	71%	482	256	53%	154	114	74%
	w or GEH Crit	teria								,				
Above Flow Crit Criteria a		> 85 % of links	482	260	54%	154	131	85%	482	284	59%	154	125	81%
					А	LL					C	AR		
	GEH Range		CALIB	RATION	VALID	ATION	COME	BINED	CALIB	RATION	VALIC	ATION	COM	BINED
	GEH < 2		100	21%	45	29%	145	23%	119	25%	49	32%	168	26%
	GEH < 4		196	41%	92	60%	288	45%	212	44%	89	58%	301	47%
	GEH < 6		269	56%	126	82%	395	62%	289	60%	125	81%	414	65%
	GEH < 8		338	70%	140	91%	478	75%	349	72%	136	88%	485	76%
	GEH < 10		388	80%	144	94%	532	84%	388	80%	149	97%	537	84%
	GEH <5		230	48%	110	71%	340	53%	256	53%	114	74%	370	58%
				Flow < 5%							GEH	1 < 4		
Screenlines			ALL		Car	LGV		HGV	ALL		Car	LGV		HGV

٩٧

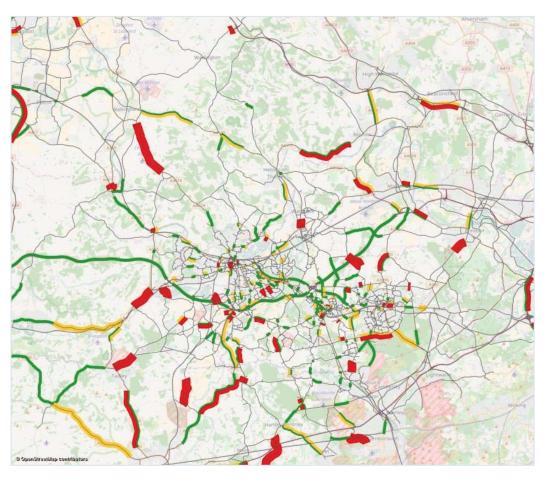


Figure 25 – WSTM4 AM peak Prior Matrix Performance

				Inter peak										
				ALL							C	AR		
Criteria and Measure Guideline			(ALIBRATIO	N	Ņ	ALIDATIO	N	C	ALIBRATIO	N	١	ALIDATION	N
Observed	Flow Criteria Modelled		Total Counts	Meet Criteria	%	Total Counts	Meet Criteria	%	Total Counts	Meet Criteria	%	Total Counts	Meet Criteria	%
< 700 pph	±100 vph	> 85 % of links	377	213	56%	132	98	74%	398	253	64%	144	114	79%
700 - 2,700 vph	±15%	> 85 % of links	89	48	54%	20	12	60%	75	42	56%	8	5	63%
> 2,700 vph	±400 vph	> 85 % of links	16	10	63%	2	1	50%	9	5	56%	2	2	100%
	GEH Criteria													
GEH Statistic f links <		> 85 % of links	482	238	49%	154	86	56%	482	250	52%	154	89	58%
Flov	w or GEH Crit	teria												
Above Flow Crit Criteria ar		> 85 % of links	482	281	58%	154	114	74%	482	307	64%	154	124	81%
									5		-			
					A	LL	1				C	AR		
	GEH Range		CALIB	RATION	{		СОМЕ	BINED	CALIBF	RATION			COME	BINED
	GEH Range GEH < 2		CALIB 96	RATION	{		COME 134	BINED 21%	CALIBF 92	RATION 19%			COME 129	BINED
				-	VALIC	DATION					VALID	ATION		
	GEH < 2		96	20%	VALIE 38	0ATION 25%	134	21%	92	19%	VALID 37	ATION	129	20%
	GEH < 2 GEH < 4		96 191	20% 40%	VALIE 38 69	OATION 25% 45%	134 260	21% 41%	92 201	19% 42%	VALID 37 77	ATION 24% 50%	129 278	20% 44%
	GEH < 2 GEH < 4 GEH < 6		96 191 273	20% 40% 57%	VALIE 38 69 95	0ATION 25% 45% 62%	134 260 368	21% 41% 58%	92 201 285	19% 42% 59%	VALID 37 77 103	ATION 24% 50% 67%	129 278 388	20% 44% 61%
	GEH < 2 GEH < 4 GEH < 6 GEH < 8		96 191 273 338	20% 40% 57% 70%	VALIE 38 69 95 119	25% 45% 62% 77%	134 260 368 457	21% 41% 58% 72%	92 201 285 352	19% 42% 59% 73%	VALID 37 77 103 126	24% 50% 67% 82%	129 278 388 478	20% 44% 61% 75%
	GEH < 2 GEH < 4 GEH < 6 GEH < 8 GEH < 10		96 191 273 338 383	20% 40% 57% 70% 79%	VALIE 38 69 95 119 134	25% 45% 62% 77% 87% 56%	134 260 368 457 517	21% 41% 58% 72% 81%	92 201 285 352 399	19% 42% 59% 73% 83%	VALID 37 77 103 126 144	ATION 24% 50% 67% 82% 94% 58%	129 278 388 478 543	20% 44% 61% 75% 85%
S	GEH < 2 GEH < 4 GEH < 6 GEH < 8 GEH < 10		96 191 273 338 383	20% 40% 57% 70% 79% 49%	VALIE 38 69 95 119 134 86	25% 45% 62% 77% 87% 56%	134 260 368 457 517 324	21% 41% 58% 72% 81%	92 201 285 352 399	19% 42% 59% 73% 83% 52%	VALID 37 77 103 126 144 89	ATION 24% 50% 67% 82% 94% 58%	129 278 388 478 543 339	20% 44% 61% 75% 85%

7

Figure 26 - WSTM4 Inter peak Prior Matrix Performance

Criteria and	Acceptability Guideline	
	Flow Criteria	•
Observed	Modelled	
< 700 pph	±100 vph	> 85 % of links
700 - 2,700 vph	> 85 % of links	
> 2,700 vph	±400 vph	> 85 % of links
	GEH Criteria	
GEH Statistic f		> 85 % of links
Flo	w or GEH Crit	eria
Above Flow Crit Criteria a		> 85 % of links

-

GEH Range
GEH < 2
GEH < 4
GEH < 6
GEH < 8
GEH < 10
GEH <5

					PMI	Peak					
ALL								C/	٨R		
С	ALIBRATIO	N	١	ALIDATIO	N	CALIBRATION VAL			ALIDATION		
Total Counts	Meet Criteria	%	Total Counts	Meet Criteria	%	Total Counts	Meet Criteria	%	Total Counts	Meet Criteria	%
285	153	54%	115	91	79%	303	183	60%	117	91	78%
172	84	49%	37	25	68%	157	80	51%	35	26	74%
25	16	64%	2	0	0%	22	13	59%	2	2	100%
)		›		,		, , , , , , , , , , , , , , , , , , , ,			,	
482	238	49%	154	93	60%	482	259	54%	154	103	67%
	,		,	,	1					,	
482	270	56%	154	117	76%	482	290	60%	154	124	81%
		AI	LL					CA	AR		
CALIB	RATION	VALID	ATION	СОМ	BINED	CALIB	RATION	VALID	ATION	COME	BINED
98	20%	50	32%	148	23%	106	22%	58	38%	164	26%
201	42%	82	53%	283	44%	224	46%	88	57%	312	49%
276	57%	109	71%	385	61%	288	60%	117	76%	405	64%
345	72%	127	82%	472	74%	357	74%	129	84%	486	76%
395	82%	141	92%	536	84%	398	83%	145	94%	543	85%

		Flow < 5%				GEH < 4			
Screenlines	ALL	Car	LGV	HGV	ALL	Car	LGV	HGV	
26	12 46 %	12 46%	6 23%	1 4%	14 54%	10 38%	15 58%	16 62%	

60%

331

52%

259

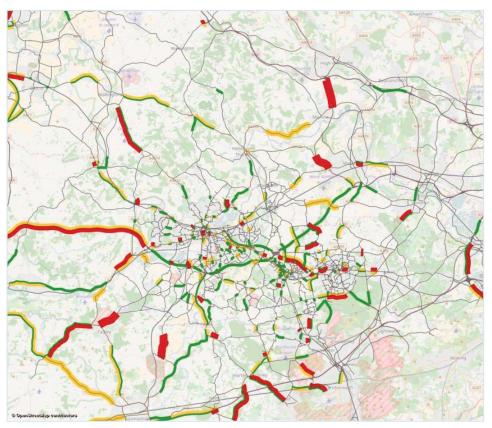
54%

103

67%

362

57%


WOKINGHAM STRATEGIC TRANSPORT MODEL 4 (WSTM4) Project No.: 70014995 | Our Ref No.: 70014995 Wokingham Borough **Council**

238

49%

93

۸SD

Figure 27 - WSTM4 PM peak Prior Matrix Performance

5.5 FINAL MODEL PERFORMANCE

- 5.5.1. This section of the report presents the WSTM4 highway assignment model final performance and is split into the following sub-sections:
 - Count calibration
 - Count validation
 - Screenlines and cordons
 - Journey times
 - Junction validation
 - Route validation
 - Impact of matrix estimation.

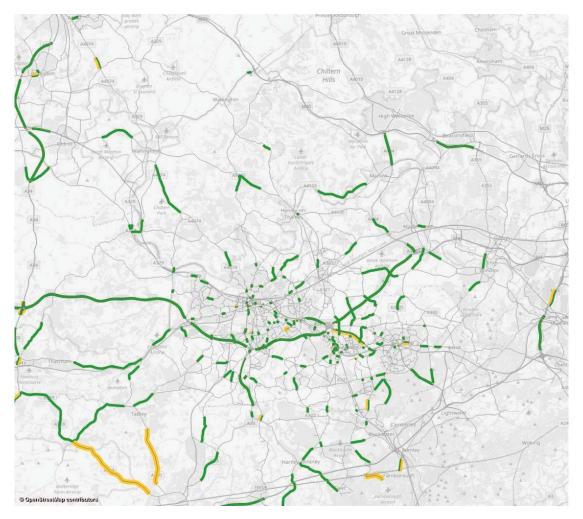
COUNT CALIBRATION

5.5.2. Table 9 and Figure 28 show the final calibration performance of the WSTM4 AM peak. Table 9 shows that TAG criteria are met for car and total flow. Figure 28 graphically presents the performance. All counts meeting flow or GEH criteria are coloured in green, those not meeting the flow criteria but have a GEH between 5 and 10 are orange and those with a GEH > 10 are red. Appendix B-1 contains the tables of individual link performance in the AM peak, Inter peak and PM peak.

Criteria and	Acceptability Guideline		
	Flow Criteria		
Observed	Modelled		
< 700 pph	±100 vph	> 85 % of links	
700 - 2,700 vph	700 - 2,700 vph ±15%		
> 2,700 vph	±400 vph	> 85 % of links	
	GEH Criteria		
GEH Statistic f links ·	> 85 % of links		
Flo	w or GEH Crit	eria	
Above Flow Crit Criteria a		> 85 % of links	

	AM Peak									
	ALL			Car						
Total Counts	Meet Criteria	%	Total Counts	Meet Criteria	%					
289	249	86%	325	283	87%					
165	141	85%	136	117	86%					
28	27	96%	21	21	100%					
482	411	85%	482	414	86%					
482	428	89%	482	431	89%					

Figure 28 - WSTM4 AM peak Calibration Final Performance


5.5.3. Table 10 and Figure 29 show the final calibration performance of the WSTM4 Inter peak. Table 10 shows that TAG criteria are met for car and total vehicles. Figure 29 graphically presents the performance. All counts meeting flow or GEH criteria are coloured in green, those not meeting the flow criteria but have a GEH between 5 and 10 are orange and those with a GEH > =10 are red.

Criteria and	Criteria and Measure						
	Flow Criteria						
Observed	Modelled						
< 700 pph	±100 vph	> 85 % of links					
700 - 2,700 vph	> 85 % of links						
> 2,700 vph	±400 vph	> 85 % of links					
	GEH Criteria						
GEH Statistic links ·	> 85 % of links						
Flo	eria						
Above Flow Cri Criteria a		> 85 % of links					

Interpeak									
	ALL			Car					
Total Counts	Meet Criteria	%	Total Counts	Meet Criteria	%				
377	339	90%	398	374	94%				
89	80	90%	75	65	87%				
16	15	94%	9	9	100%				
			}						
482	411	85%	482	437	91%				
482	439	91%	482	456	95%				

Table 10 - WSTM4 Inter peak Calibration Final Performance Link Statistics

Figure 29 - WSTM4 Inter peak Calibration Final Performance

5.5.4. The calibration final performance for the PM peak is shown below. Table 11 shows that TAG criteria are met for car and for the total vehicles. Figure 30 graphically presents the performance.

Criteria and	Measure	Acceptability Guideline
	Flow Criteria	
Observed	Modelled	
< 700 pph	±100 vph	> 85 % of links
700 - 2,700 vph	±15%	> 85 % of links
> 2,700 vph	±400 vph	> 85 % of links
	GEH Criteria	
GEH Statistic links		> 85 % of links
Flo	w or GEH Crit	eria
Above Flow Cri Criteria a		> 85 % of links

		PMF	Peak							
C	ALIBRATIO	N	CALIBRATION							
Total Counts	Meet Criteria	%	Total Counts	Meet Criteria	%					
285	247	87%	304	266	88%					
172	148	86%	156	133	85%					
25	24	96%	22	21	95%					
482	411	85%	482	410	85%					
482	431	89%	482	431	89%					

Figure 30 - WSTM4 PM peak Calibration Final Performance

COUNT VALIDATION

5.5.5. Table 12 provides a summary of the final validation performance of the WSTM4 AM Peak highway assignment and shows that TAG criteria is met for the car and total vehicles.

5.5.6. The performance is graphically presented in Figure 31. All counts meeting either flow or GEH criteria are coloured in green, those not meeting the flow criteria but have a GEH between 5 and 10 are orange and those with a GEH >= 10 are red. Appendix B-2 contains the tables of individual link performance during the AM peak, Inter peak and PM peak.

					AM F	Peak					
Measure	Acceptability Guideline			ALL			Car				
Flow Criteria			Total	Meet	0/	Total Meet					
Modelled			Counts	Criteria	/0	Counts	Criteria	%			
±100 vph	> 85 % of links		117	100	85%	123	106	86%			
±15%	> 85 % of links		35	30	86%	29	26	90%			
±400 vph	> 85 % of links		2	2	100%	2	2	100%			
GEH Criteria											
for individual < 5	> 85 % of links		154	125	81%	154	122	79%			
Flow or GEH Criteria											
teria or GEH re met	> 85 % of links		154	138	90%	154	137	89%			
	Flow Criteria Modelled ±100 vph ±15% ±400 vph GEH Criteria for individual < 5 w or GEH Crit teria or GEH	Measure Guideline Flow Criteria Modelled ±100 vph > 85 % of links ±15% > 85 % of links ±400 vph > 85 % of links ±400 vph > 85 % of links set or individual < 5	Measure Guideline Flow Criteria Modelled ±100 vph > 85 % of links ±15% > 85 % of links ±400 vph > 85 % of links ±400 vph > 85 % of links standard > 85 % of links wordEH Criteria > 85 % of links teria or GEH > 85 % of links	Measure Guideline Flow Criteria Total Counts #100 vph > 85 % of links 117 ±15% > 85 % of links 35 ±400 vph > 85 % of links 2 GEH Criteria 154 vor GEH Criteria 154	Measure Guideline ALL Guideline Total Meet Flow Criteria Counts Criteria ±100 vph > 85 % of links 117 100 ±15% > 85 % of links 35 30 ±400 vph > 85 % of links 2 2 GEH Criteria	MeasureAcceptability GuidelineALLFlow CriteriaTotal CountsMeet CriteriaModelled**±100 vph> 85 % of links117±15%> 85 % of links35±400 vph> 85 % of links±400 vph> 85 % of links±6F Criteria** <td>Measure Guideline Total Meet % Total Flow Criteria Modelled 117 100 85% 123 ±100 vph > 85 % of links 117 100 85% 123 ±15% > 85 % of links 35 30 86% 29 ±400 vph > 85 % of links 2 2 100% 2 GEH Criteria </td> <td>MeasureAcceptability GuidelineALLCarFlow CriteriaTotal ModelledMeet CountsMeet CountsMeet Counts±100 vph> 85 % of links11710085%123106±15%> 85 % of links353086%2926±400 vph> 85 % of links22100%22GEH Criteria15412581%154122teria or GEH teria or GEH> 85 % of links15413890%154137</td>	Measure Guideline Total Meet % Total Flow Criteria Modelled 117 100 85% 123 ±100 vph > 85 % of links 117 100 85% 123 ±15% > 85 % of links 35 30 86% 29 ±400 vph > 85 % of links 2 2 100% 2 GEH Criteria	MeasureAcceptability GuidelineALLCarFlow CriteriaTotal ModelledMeet CountsMeet CountsMeet Counts±100 vph> 85 % of links11710085%123106±15%> 85 % of links353086%2926±400 vph> 85 % of links22100%22GEH Criteria15412581%154122teria or GEH teria or GEH> 85 % of links15413890%154137			

Table 12 - WSTM4 AM peak Validation Final Performance Link Statistics

70

Figure 31 - WSTM4 AM peak Validation Final Performance

5.5.7. Table 13 and Figure 32 show the final validation performance of the WSTM4 Inter Peak highway assignment. Table 13 shows that TAG criteria are met for the car and total vehicles. Figure 32 graphically presents the performance. All counts meeting either flow or GEH criteria are coloured in green, those not meeting flow criteria but which have a GEH between 5 and 10 are orange and those with a GEH >= 10 are red.

Table 13 - WSTM4 Inter peak Validation Final Performance Link Statistics

						Inter	peak				
Criteria and	Measure	Acceptability Guideline			ALL		Car				
	Flow Criteria			Total	Meet	%	Total	Meet	%		
Observed	Observed Modelled			Counts Criteria		70	Counts	Criteria	70		
< 700 pph	±100 vph	> 85 % of links		132	115	87%	144	128	89%		
700 - 2,700 vph	±15%	> 85 % of links		20	18	90%	8	8	100%		
> 2,700 vph	±400 vph	> 85 % of links		2	2	100%	2	2	100%		
	GEH Criteria										
GEH Statistic links		> 85 % of links		154	105	<mark>68%</mark>	154	105	<mark>68%</mark>		
Flow or GEH Criteria											
Above Flow Criteria or GEH Criteria are met		> 85 % of links		154	137	89%	154	139	90%		

۸SD

Figure 32 - WSTM4 Inter peak Validation Final Performance

5.5.8. Table 14 and Figure 33 show the final validation performance of the WSTM4 PM Peak highway assignment. Table 14 shows that TAG criteria are met for the car and total vehicles. Figure 33 graphically presents the performance. All counts meeting either flow or GEH criteria are coloured in green, those not meeting flow criteria but have a GEH between 5 and 10 are orange and those with a GEH >= 10 are red.

Table 14 - WSTM4 PM peak Validation Final Performance Link Statistics

						PMI	Peak				
Criteria and	Criteria and Measure Acceptability Guideline				ALL		Car				
	Flow Criteria	1		Total	Meet	%	Total	Meet	%		
Observed	Modelled	}		Counts	Criteria	70	Counts	Criteria	/0		
< 700 pph	±100 vph	> 85 % of links		115	99	86%	117	103	88%		
700 - 2,700 vph	±15%	> 85 % of links		37	33	89%	35	31	89%		
> 2,700 vph	±400 vph	> 85 % of links		2	2	100%	2	2	100%		
	GEH Criteria										
GEH Statistic links		> 85 % of links		154	113	73%	154	116	75%		
Flo	w or GEH Crit	eria									
Above Flow Cri Criteria a		> 85 % of links		154	135	88%	154	137	89%		

Figure 33 - WSTM4 PM Peak Validation Final Performance

SCREENLINE AND CORDON PERFORMANCE

5.5.9. The WSTM4 has 26 screenlines and cordons. Table 15 to Table 17 show the screenline and cordon statistics for all the individual classes in the WSTM4 for AM peak, Inter peak and PM peak.

Table 15 - WSTM4 AM Peak Screenline and Cordon Performance	Summary
--	---------

				Flow	< 5%	, 0			GEH < 4							
Screenlines	ALL Car			L	LGV HGV			ALL Car			ar	L	GV	HGV		
26	23	88%	23	88%	15	58%	3	12%	23	88%	24	92%	23	88%	22	85%

Table 16 - WSTM4 Inter Peak Screenline and Cordon Performance Summary

				Flow	< 5%	, 0			GEH < 4								
Screenlines	A	ALL Car L			L	GV	н	GV	А	LL	Car		LGV		HGV		
26	24	92%	23	88%	13	50%	6	23%	24	92%	26	100%	25	96%	22	85%	

	Flow < 5%									GEH < 4								
Screenlines	ALL Car			ar	L	LGV HGV			Α	LL	C	ar	LGV		HGV			
26	24	92%	22	85%	13	50%	8	31%	23	88%	24	92%	24	92%	24	92%		

Table 17 – WSTM4 PM Peak Screenline and Cordon Performance Summary

- 5.5.10. The tables show that the screenlines and cordons for car, LGV, HGV and total vehicles meet the GEH criteria. Car and total vehicles also meet the flow criteria. Due to the fact that LGV and HGV observations along the screenlines and cordons in the study area are limited, the flow criteria were not achievable, however analysis of LGV and HGV flows shows that more than 85% of screenlines meet the GEH criteria.
- 5.5.11. Detailed performance of each calibration screenline/ cordon for each time period by vehicle class can be found in Appendix B-3. The same Appendix provides the detailed screenline and cordon performance tables, outlining the performance of individual counts.

JOURNEY TIMES

- 5.5.12. There are 40 one way journey time routes which are assessed within the model. Figure 22 and Figure 23 presented the routes within the WSTM4.
- 5.5.13. Table 18 summarises the journey time performance for all the routes across the WSTM4. The modelled journey times were compared against the median of observed journey times as this reduces the impact of extreme outliers. The details of the journey time performance for each time period can be found in Table 19 to Table 21. Appendix B-4 contains the individual journey time graphs.

Table 18 - WSTM4 Journey Time Performance

	Routes Passed										
Journey Time Routes	AM F	Peak	Inter	Peak	PM Peak						
40	38	95%	35	88%	35	88%					

5.5.14. Table 18 shows that all journey time routes meet the TAG criteria with 38 routes out of a total of 40 routes in the AM peak and 35 routes out of a total of 40 routes in the Inter peak and PM peak fall within 15% or 1 minute of the observed journey times.

Table 19 - AM Peak Journey Time Performance

i aon		Boutos	40		3	
		Routes Passed	40 38	95%		
		183566	<u> </u>	3378	5	
			АМ	Peak		
		<u> </u>	,	i oun		
ID	Name	Observed (s)	Modelled (s)	Diff	%	Pass?
1	JT 1 EB	1882	1799	-82	-4%	Yes
2	JT 1 WB	1944	1765	-179	-9%	Yes
3	JT 2 EB	1594	1776	182	11%	Yes
4	JT 2 WB	1787	1793	6	0%	Yes
5	JT 3 EB	634	639	5	1%	Yes
6	JT 3 WB	721	685	-35	-5%	Yes
7	JT 4 EB	2094	1870	-224	-11%	Yes
8	JT 4 WB	2204	2082	-122	-6%	Yes
9	JT 5 EB	1726	1504	-222	-13%	Yes
10	JT 5 WB	1539	1459	-80	-5%	Yes
11	JT 6 NB	2174	2348	175	8%	Yes
12	JT 6 SB	2469	2646	177	7%	Yes
13	JT 7 EB	1818	1633	-184	-10%	Yes
14	JT 7 WB	1600	1607	7	0%	Yes
15	JT 8 NB	3692	3665	-27	-1%	Yes
16	JT 8 SB	4300	3697	-603	-14%	Yes
17	JT 9 NB	1187	1150	-37	-3%	Yes
18	JT 9 SB	1299	1138	-161	-12%	Yes
19	JT 10 EB	3265	3010	-255	-8%	Yes
20	JT 10 WB	2944	3248	304	10%	Yes
21	JT 11 NB	1901	1624	-277	-15%	Yes
22	JT 11 SN	1863	1625	-238	-13%	Yes
23	JT 12 EB	1570	1495	-75	-5%	Yes
24	JT 12 WB	1359	1404	46	3%	Yes
25	JT 13 EB	2338	2125	-214	-9%	Yes
26	JT 13 WB	2890	2102	-788	-27%	No
27	JT 14 NB	1102	1388	286	26%	No
28	JT 14 SB	1274	1134	-140	-11%	Yes
29	JT 15 EB	2454	2230	-224	-9%	Yes
30	JT 15 WB	2510	2185	-326	-13%	Yes
31	JT 16 NB	1591 1742	1510	-81 1	-5%	Yes
32	JT 16 SB		1741	-1 206	0%	Yes
33	JT 17 NB	2070	1774	-296	-14%	Yes
34	JT 17 SB	1830	1791	-39	-2%	Yes
35	JT 18 EB	2405	2223	-182	-8%	Yes
36	JT 18 WB	2440	2242	-198	-8%	Yes
37	JT 19 EB	1848	1943	94 57	5% 2%	Yes
38	JT 19 WB	1776	1833	57 05	3%	Yes
39	JT 20 EB	772	676 502	-95	-12%	Yes
40	JT 20 WB	550	503	-47	-9%	Yes

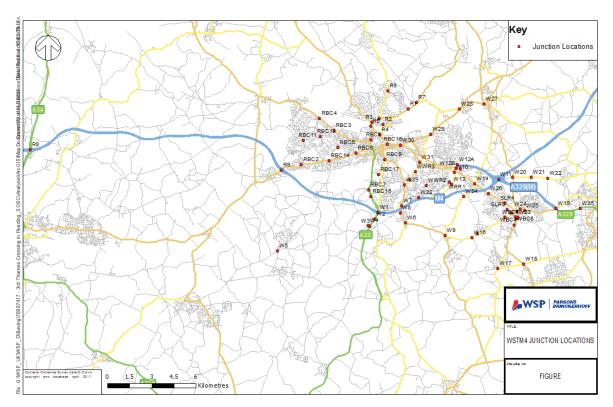
Table 20 - Inter Peak Journey Time Performance

Routes 40 Passed 35 88%	,		
Passed 35 88%		40	
	Passed	35	88%

		Interpeak						
				510				
ID	Name	Observed (s)	Modelled (s)	Diff	%	Pass?		
1	JT 1 EB	1719	1590	-130	-8%	Yes		
2	JT 1 WB	1701	1636	-65	-4%	Yes		
3	JT 2 EB	1370	1494	124	9%	Yes		
4	JT 2 WB	1295	1480	184	14%	Yes		
5	JT 3 EB	610	589	-21	-3%	Yes		
6	JT 3 WB	633	599	-34	-5%	Yes		
7	JT 4 EB	1868	1643	-225	-12%	Yes		
8	JT 4 WB	1536	1716	180	12%	Yes		
9	JT 5 EB	1347	1303	-44	-3%	Yes		
10	JT 5 WB	1307	1346	39	3%	Yes		
11	JT 6 NB	1761	2019	258	15%	Yes		
12	JT 6 SB	1814	2069	255	14%	Yes		
13	JT 7 EB	1478	1558	79	5%	Yes		
14	JT 7 WB	1600	1504	-96	-6%	Yes		
15	JT 8 NB	3077	3282	205	7%	Yes		
16	JT 8 SB	3175	3219	43	1%	Yes		
17	JT 9 NB	1013	967	-46	-5%	Yes		
18	JT 9 SB	991	991	0	0%	Yes		
19	JT 10 EB	2207	2428	221	10%	Yes		
20	JT 10 WB	2169	2571	402	19%	No		
21	JT 11 NB	1686	1598	-88	-5%	Yes		
22	JT 11 SN	1681	1604	-77	-5%	Yes		
23	JT 12 EB	1284	1434	150	12%	Yes		
24	JT 12 WB	1335	1398	63	5%	Yes		
25	JT 13 EB	2079	2075	-4	0%	Yes		
26	JT 13 WB	2144	2105	-39	-2%	Yes		
27	JT 14 NB	817	957	140	17%	No		
28	JT 14 SB	823	937	114	14%	Yes		
29	JT 15 EB	2091	2077	-14	-1%	Yes		
30	JT 15 WB	2279	2138	-140	-6%	Yes		
31	JT 16 NB	1274	1353	79	6%	Yes		
32	JT 16 SB	1423	1721	298	21%	No		
33	JT 17 NB	1495	1572	77	5%	Yes		
34	JT 17 SB	1564	1589	24	2%	Yes		
35	JT 18 EB	2144	1722	-422	-20%	No		
36	JT 18 WB	2171	1738	-432	-20%	No		
37	JT 19 EB	1577	1657	80	5%	Yes		
38	JT 19 WB	1483	1643	161	11%	Yes		
39	JT 20 EB	422	406	-16	-4%	Yes		
40	JT 20 WB	411	417	6	1%	Yes		

۱۱SD

Table 21 - PM Peak Journey Time Performance


		Routes	40		3	
		Passed	35	88%		
					-	
			PM	Peak		
ID	Name	Observed (s)	Modelled (s)	Diff	%	Р
	Name	Observed (s)	wodened (s)	Dill	/0	F
1	JT 1 EB	1871	1647	-225	-12%	
2	JT 1 WB	1866	1656	-210	-11%	
3	JT 2 EB	1473	1798	325	22%	<u> </u>
4	JT 2 WB	1710	1916	206	12%	
5	JT 3 EB	654	641	-13	-2%	
6	JT 3 WB	698	621	-77	-11%	
7	JT 4 EB	2086	1989	-97	-5%	
8	JT 4 WB	2290	2239	-51	-2%	
9	JT 5 EB	1485	1412	-73	-5%	
10	JT 5 WB	1400	1517	117	8%	
11	JT 6 NB	2576	2703	127	5%	
12	JT 6 SB	2452	2559	107	4%	`
13	JT 7 EB	1576	1700	124	8%	
14	JT 7 WB	1794	1647	-147	-8%	`
15	JT 8 NB	4308	3831	-477	-11%	`
16	JT 8 SB	3907	3917	10	0%	
17	JT 9 NB	1065	1037	-29	-3%	`
18	JT 9 SB	1035	1115	79	8%	`
9	JT 10 EB	3014	3186	172	6%	`
0	JT 10 WB	2848	3217	368	13%	`
21	JT 11 NB	1667	1620	-47	-3%	
22	JT 11 SN	1746	1646	-100	-6%	`
23	JT 12 EB	1288	1441	153	12%	
24	JT 12 WB	1426	1527	101	7%	
25	JT 13 EB	2483	2100	-383	-15%	1
26	JT 13 WB	2484	2112	-372	-15%	
27	JT 14 NB	1258	1196	-62	-5%	
28	JT 14 SB	1259	1142	-117	-9%	
29	JT 15 EB	2335	2228	-107	-5%	
30	JT 15 WB	2372	2307	-64	-3%	
31	JT 16 NB	1702	1721	19	1%	
32	JT 16 SB	1509	1756	247	16%	
33	JT 17 NB	1826	1750	-76	-4%	
34	JT 17 SB	1771	1783	13	1%	
5 5	JT 18 EB	2483	1838	-645	-26%	
6 16	JT 18 WB	2403	2259	-380	-14%	,
37	JT 19 EB	1940	1969	-380	2%	
38	JT 19 WB	1869	1909	-26	-1%	-
39	JT 20 EB	585	543	-20	-1%	
10	JT 20 WB	708	543 562	-42 -146	-21%	

5.5.15. The comparison of the modelled and observed journey times shows that average observed travel times and delays have been reflected well in the AM peak, Inter peak and PM peak hour models.

JUNCTION VALIDATION

5.5.16. Model's performance has been assessed at 74 junctions in the AM peak and PM peak hours and at 68 junctions in the Inter Peak. The sites are graphically represented in Figure 34. Most of the surveyed junctions currently operate at capacity and are likely to be impacted by the additional traffic generated in the future. The

observed and modelled turning movement validation statistics for these sites are summarised in Table 22 and the detailed statistics of each of the junctions is presented in Appendix B-5.

Figure 34 - WSTM4 Location of junctions

 Table 22 – Junction validation summary statistics

	AM Peak		Inter Peak		PM Peak	
Total number of junctions	74		68		74	
At least 75% of all turns at these junctions demonstrate a good correlation between observed and modelled flows with GEH being less than 7.5	67	91%	63	93%	66	89%

5.5.17. The GEH value for turning movements has been relaxed slightly to 7.5 with 91%, 93% and 89% of all junctions in the AM peak, Inter peak and PM peak having at least 75% of turning movements, which demonstrate a good correlation between observed and modelled flows. This is a very good result considering the size and strategic nature of the model.

ROUTE VALIDATION

- 5.5.18. The calibration of a model crucially relies on traffic entering the detailed modelling area at the correct points and on the correct routes. The 'Shortest Route Path' function in VISUM plots all the routes used within the network for trips between two zones. By using this function for many zone pairs throughout the study area, routes used by traffic were examined to ensure they are reasonable and resemble probable routes used by vehicles in the base traffic situation.
- 5.5.19. The routes used in each situation are the lowest cost routes available between the two zones obtained from an unassigned scenario (i.e. no delays in the network created by the presence of traffic).
- 5.5.20. To check that the assigned routes in the model were feasible and in accordance with common sense, 'paths' were built between the following origin-destination pairs.
 - OD 1: Wokingham Town Centre to North Caversham

- OD 2: Spencers Wood to Wokingham
- OD 3: Eversley to Whitley
- OD 4: Crowthorne to Twyford
- OD 5: Bracknell to Earley
- OD 6: Jennets Park to Thames Valley Business Park
- OD 7: Binfield to Oxford
- OD 8: Lower Earley to Basingstoke
- OD 9: Henley to Reading.
- 5.5.21. During the route validation exercise a number of changes were made to the network attributes where the routes were not found reasonable. The resultant AM peak hour shortest path routes from the models compared to "Google Maps" are included in Appendix B-6. All final paths appear to be reasonable and representative of actual drivers likely route choices.

MODEL CONVERGENCE

5.5.22. Each user class is assigned over a number of iterations until a level of stability or 'convergence' is achieved. The TAG-recommended convergence criteria, which is a pre-set set within VISUM, is set out in Table 23.

Table 23 – TAG Convergence Criteria

Measure of convergence	Acceptable value
Delta' or % GAP	Less than 0.1% or at least stable with convergence fully documented and all other criteria met
Percentage of links (non-ICA) or turns (ICA) with flow change < set threshold ('P')	Four consecutive iterations greater than 98%

5.5.23. The results of the assignment are shown in Table 24 for each modelled time period. These demonstrate that the vehicle classes converge 'naturally', i.e. according to the settings.

Table 24 – WSTM4 Convergence Results

	AM Peak			Interpeak			PM Peak		
Mode	Iteration	Delta	%Flow	Iteration	Delta	%Flow	Iteratio	n Delta	%Flow
	15	0.00127897	0.99726349	7	0.00087660	0.99139953		0.00111635	0.9894448
	16	0.00110387	0.99452697	8	0.00064003	0.98553557		0.00113775	0.9937451
ICA	17	0.00172152	0.99583008	9	0.00100076	0.98762054		0.00102923	0.9945269
ICA	18	0.00115362	0.99622101	10	0.00093372	0.99569977		0.00100117	0.9953088
	19	0.00116382	0.99583008	11	0.00077971	0.99934845		0.00108985	0.9950482
	20	0.00116011	0.99713318	12	0.00078519	1.00000000		0.00108263	0.9981756
Measure of convergence									
Delta (GAP)		Pass			Pass			Pass	
Percentage of links (non-ICA) or turns (ICA) with flow change < set threshold		Pass			Pass		Pass		

5.6 IMPACT OF MATRIX ESTIMATION REGRESSION STATISTICS AT TRIP END LEVEL

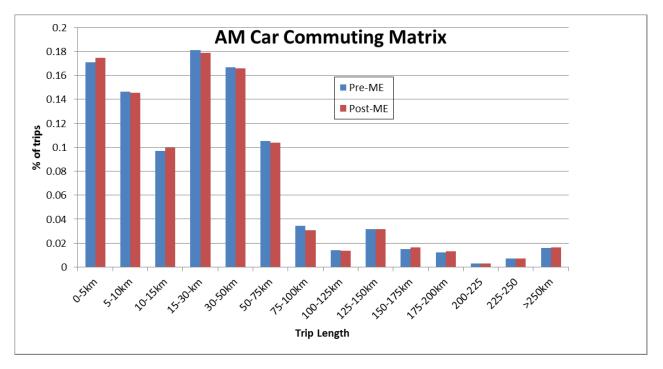
- 5.6.1. Table 25 to Table 27 present the AM peak, Inter peak and PM peak pre and post matrix estimation statistics. TAG guidance suggests that the following criteria is met between the pre and post matrix estimation matrix zonal trip ends:
 - Gradient is within 0.99 and 1.01
 - Intercept is near zero
 - R2 is in excess of 0.98.
- **5.6.2.** The statistics indicates that the matrix estimation procedure has not fundamentally changed the prior matrix.

Table 25 – AM	neak Pre and	Post Matrix	Estimation	Statistics
	μεάκ Γιε άπα	F USL MALIA	LSumation	Statistics

Purpose	Gradient	Intercept	R ²	
Car - Commuting	0.96	-0.0042	0.96	
Car - Employers' Business	0.94	0.0003	0.94	
Car - Other	0.96	0.0004	0.96	

Table 26 – Inter peak Pre and Post Matrix Estimation Statistics

Purpose	Gradient	Intercept	R ²	
Car - Commuting	0.96	-0.0001	0.99	
Car - Employers' Business	0.99	-0.0001	0.98	
Car - Other	0.94	0.0052	0.97	


Table 27 – PM peak Pre and Post Matrix Estimation Statistics

Purpose	Gradient	Intercept	R ²
Car - Commuting	0.96	0.0047	0.96
Car - Employers' Business	1.04	-0.0018	0.99
Car - Other	1.01	-0.0042	0.96

TRIP LENGTH DISTRIBUTION

- 5.6.3. The trip length distribution for the prior and final matrices for each demand segment with each time period has been calculated. The trip distribution graphs are shown in Figure 35 to Figure 49.
- 5.6.4. All the graphs show that there are only very small changes in trip length distribution between the prior and final matrices.

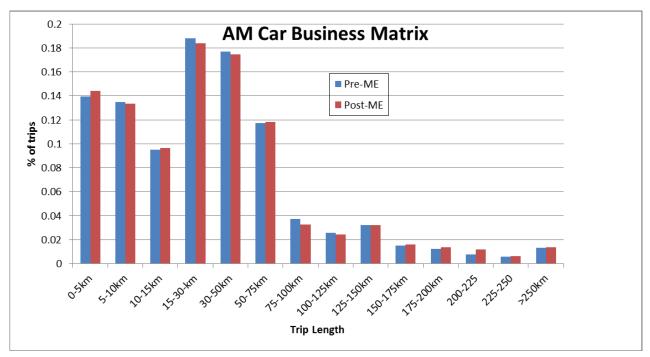
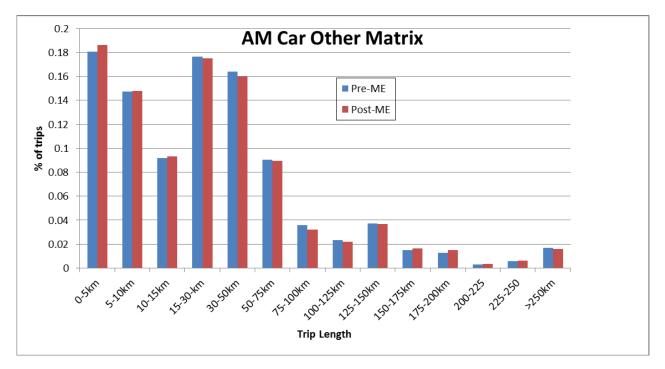



Figure 36 - AM Peak Trip Length Distribution Car Business

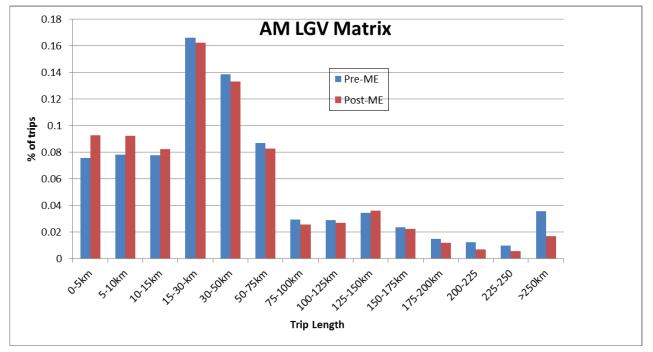
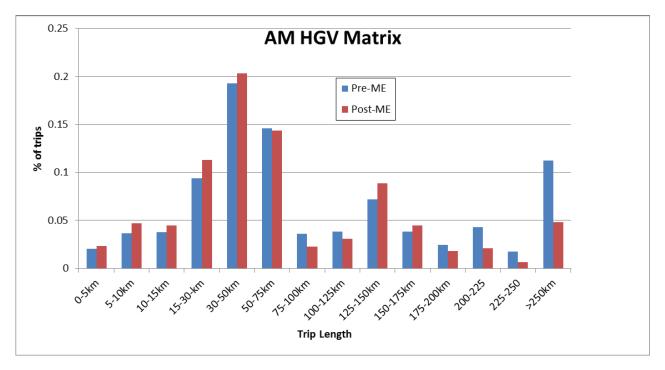
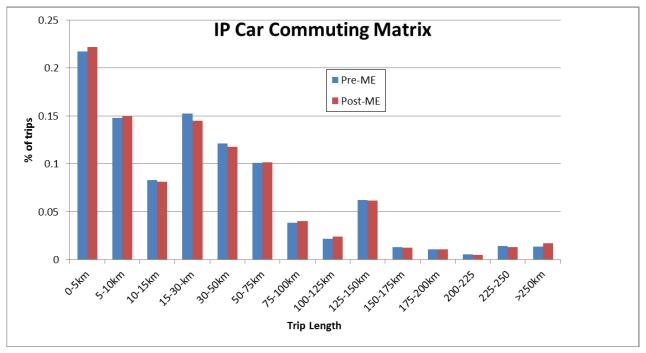
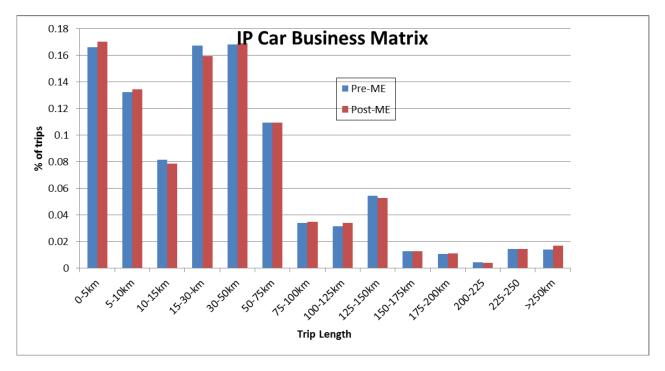




Figure 38 - AM Peak Trip Length Distribution LGV


Figure 39 - AM Peak Trip Length Distribution HGV

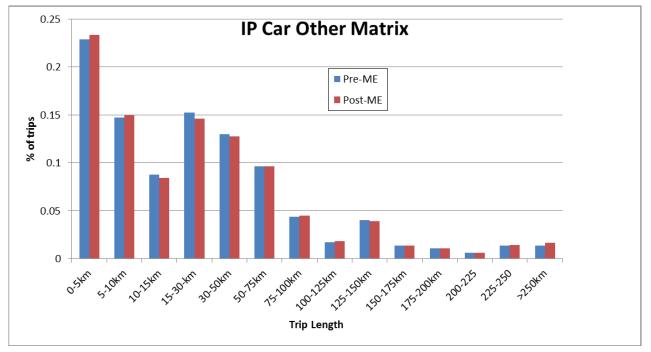
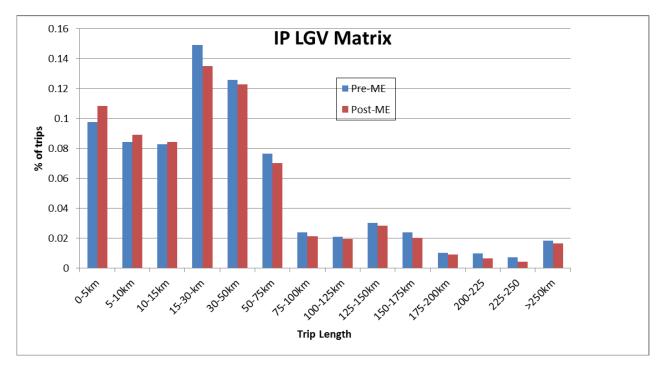
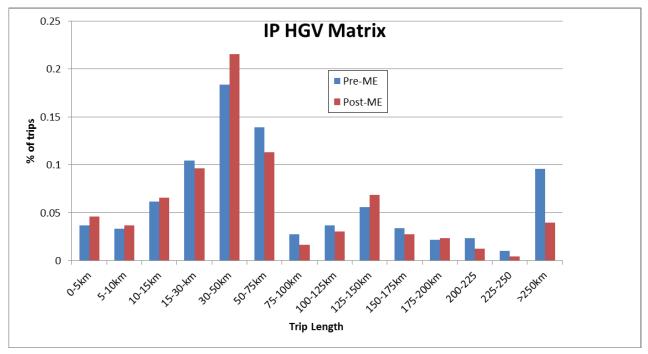
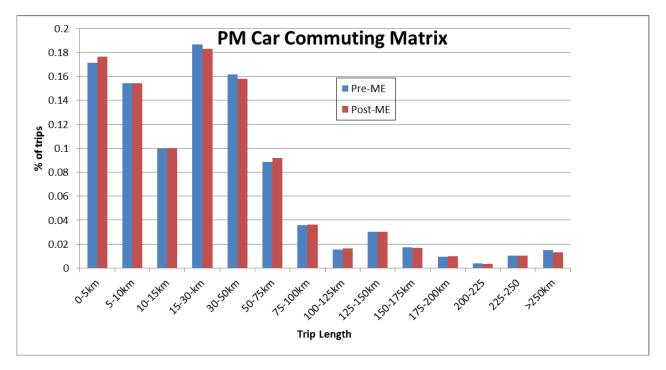




Figure 42 - Inter Peak Trip Length Distribution Car Other



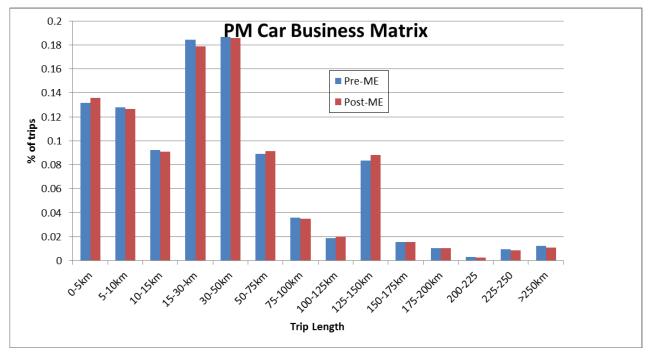
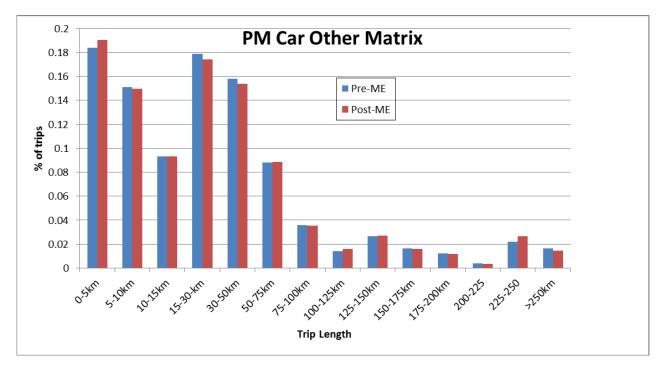



Figure 46 - PM Peak Trip Length Distribution Car Business

Figure 47 - PM Peak Trip Length Distribution Car Other

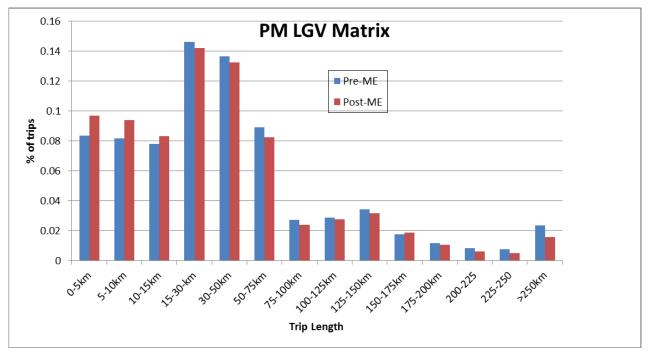
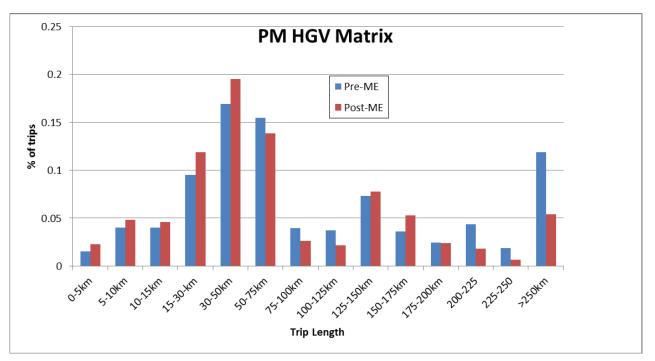



Figure 48 - PM Peak Trip Length Distribution LGV

Figure 49 - PM Peak Trip Length Distribution HGV

5.6.5. Table 28 to Table 30 present the mean and standard deviation values of the trip matrices pre and post matrix estimation. The mean and standard deviations values are very similar pre and post matrix estimation. TAG criteria expect differences to be less than 5. The AM, inter PM peak data meet Tag Guidance for cars all purposes.

Table 28 - WSTM4 Trip Mean Values – AM Peak

	Mean Values			Standard Deviation			
Purpose	Pre - ME	Post - ME	% change	Pre - ME	Post - ME	% change	
Car - Commuting	40.19	40.22	0.08%	6.26	6.34	1.31%	
Car - Employers' Business	42.80	43.65	1.97%	6.54	6.61	0.98%	
Car - Other	40.83	40.71	-0.29%	6.39	6.38	-0.15%	

Table 29 - WSTM4 Trip Mean Values – Inter Peak

	Mean Values			Standard Deviation			
Purpose	Pre - ME	Post - ME	% change	Pre - ME	Post - ME	% change	
Car - Commuting	43.88	44.59	1.61%	6.55	6.68	1.97%	
Car - Employers' Business	46.03	46.53	1.08%	6.78	6.82	0.54%	
Car - Other	41.00	41.69	1.69%	6.40	6.46	0.84%	

Table 30 - WSTM4 Trip Mean Values – PM Peak

	Mean Values			Standard Deviation		
Purpose	Pre - ME	Post - ME	% change	Pre - ME	Post - ME	% change
Car - Commuting	39.73	39.30	-1.07%	6.22	6.27	0.74%
Car - Employers' Business	46.05	46.06	0.02%	6.79	6.79	0.01%
Car - Other	42.18	42.52	0.81%	6.49	6.52	0.40%

6 CONCLUSIONS

- 6.1.1. WSTM4 is the forth update of the Wokingham Strategic Transport Model. The WSTM4 reflects 2015 travel conditions and has been developed to support strategic and local planning for the next plan period up to 2036. The previous version WSTM3 (2010 based) has been used for wider strategic testing, localised testing, plan policy evaluation and scheme appraisal within Wokingham Borough shaping transport planning policies and strategies.
- 6.1.2. The updated WSTM4 model will serve as a robust and up to date basis:
 - for scheme and development assessments in Wokingham borough (including funding applications)
 - in negotiations with the adjacent authorities, the Highways England and Network Rail
 - for assessing car parks management and re-development proposals in the borough
 - for the assessment of a new bridge across the River Thames east of Reading and the development of the Strategic Outline Business Case (SOBC) for the scheme.
- 6.1.3. The model development has been guided by the following units of the DfT TAG guidance:
 - Unit M1 "Principles of Modelling and Forecasting" (January 2014)
 - Unit M1.2 "Data Sources and Surveys" (January 2014)
 - Unit M2 "Variable Demand Modelling" (January 2014and November 2016 update)6
 - Unit M3.1 "Highway Assignment Modelling" (January 2014)
 - Unit M3.2 "Public Transport Assignment" (January 2014)
 - Unit M5.1 "Modelling Parking and Park and Ride" (January 2014).
- 6.1.4. The WSTM4 Fully Modelled Area is bounded by the M40 in the north, by the M25 in the east, by the M3 in the south and by the A339 and A34 in the west.
- 6.1.5. The base year models have been developed for the following time periods:
 - average Weekday (Monday to Thursday) AM peak hour (08:00 09:00)
 - average Weekday (Monday to Thursday) Inter peak hour (average 10:00 16:00)
 - average Weekday (Monday to Thursday) PM peak hour (17:00 18:00).
- 6.1.6. WSTM4 has inherited the WSTM3 model structure and consists of the following sub-models:
 - Highway model
 - Public Transport (PT) model
 - Variable Demand Model (VDM).
- 6.1.7. The WSTM4 has been developed using PTV's VISUM 17.01-04, a software program for traffic and transport analyses and forecasts. The use of a single software platform has combined the highway, PT and VDM models in one suite and allowed GIS based data management.
- 6.1.8. The highway and public transport networks have been updated to take account of any changes that have occurred since the original WSTM3 was built. The already detailed WSTM3 network in Wokingham Borough and Bracknell Forest was further refined in Reading town centre, South Oxfordshire and areas around the proposed location on the New Thames Crossing east of Reading.
- 6.1.9. The demand matrix development has been informed by the Vodafone's Mobile Network Data (MND) and 2011 Census. It should be noted that there is currently no guidance available on the use of MND. We were engaged in the work TS Catapult was undertaking for the DfT to produce guidance to support the clear and consistent use of MND in transport modelling and appraisal and the work undertaken for the Highways England on the Regional Model Matrix Development and have applied knowledge gained to the development of the WSTM4 trip matrices. A comprehensive verification process of the MND has been undertaken. The analysis confirmed that despite a number of data weaknesses the MND accurately represents observed trip patterns and can be used as a basis for prior matrix development.

- 6.1.10. Calibration and validation of the highway model was undertaken for the four main components of the model:
 - Network calibration and validation
 - Route choice calibration and validation
 - Trip matrix calibration and validation
 - Assignment calibration and validation.
- 6.1.11. The performance of the final highway assignment model has been examined through comparison of modelled and observed total counts on links, screenlines and cordons, junction turning counts as well as journey times along selected routes and routing comparison. In addition, the impact of matrix estimation on the prior demand matrix has been evaluated.
- 6.1.12. The WSTM4 highway model calibration process was undertaken successfully and has produced a high standard and quality of results for all three modelled time periods. It has been shown that the prior trip matrices were improved by the use of matrix estimation techniques and that this process did not significantly alter the integrity of the prior trip matrices. The calibration and validation levels achieved coupled with the quantity of traffic data included in the highway model for each time period meet the DfT's TAG criteria.
- 6.1.13. The validation of the public transport model has shown that the WSTM4 public transport model is able to closely match the journey itineraries and times provided by Travelline to travellers and can replicate the general scale of patronage along Reading centred lines and at selected rail stations and bus stops.
- 6.1.14. It has been confirmed through a series of realism tests on the Variable Demand Model that WSTM4 exhibits realistic behaviour in response to specific changes in generalised cost components, i.e. car fuel cost, public transport fares and car journey time.
- 6.1.15. It can be concluded that overall the Wokingham Strategic Transport Model 4 (WSTM4) is a robust tool suitable to be used for traffic forecasting, development and scheme assessment.